Bioclimatic Characterization Relating to Temperature and Subsequent Future Scenarios of Vine Growing across the Apulia Region in Southern Italy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hannah, 2013, Climate change, wine, and conservation, Proc. Natl. Acad. Sci. USA, 110, 6907, 10.1073/pnas.1210127110
Moral, F.J., Aguirado, C., Alberdi, V., García–Martín, A., Paniagua, L.L., and Rebollo, F.J. (2022). Future Scenarios for Viticultural Suitability under Conditions of Global Climate Change in Extremadura, Southwestern Spain. Agriculture, 12.
Koufos, 2020, Adaptive capacity of winegrape varieties cultivated in Greece to climate change: Current trends and future projections, OENO ONE, 54, 1201, 10.20870/oeno-one.2020.54.4.3129
Alikadic, 2019, The impact of climate change on grapevine phenology and the influence of altitude: A regional study, Agric. For. Meteorol., 271, 73, 10.1016/j.agrformet.2019.02.030
Jones, G.V. (2010, January 14–18). Climate, Grapes and Wine: Structure and Suitability in a Variable and Changing Climate. Proceedings of the VIII International Terroir Congress, Soave, Italy. Available online: https://ives–openscience.eu/8686/.
Drappier, 2019, Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming—Review, Crit. Rev. Food Sci. Nutr., 59, 14, 10.1080/10408398.2017.1355776
Del Lungo, S., Caputo, A.R., Gasparro, M., Alba, V., Bergamini, C., Roccotelli, S., Mazzone, F., and Pisani, F. (2016, January 24–28). Lucania as the heart of III vine domestication center: The rediscovery of autochthonous vines. Proceedings of the 39th World Congress of Vine and Wine, Bento Gonçalves, Brazil.
Grassi, F., and De Lorenzis, G. (2021). Back to the Origins: Background and Perspectives of Grapevine Domestication. Int. J. Mol. Sci., 22.
Rubio, J.L., Safriel, U., Daussa, R., Blum, W., and Pedrazzini, F. Water Scarcity, Land Degradation and Desertification in the Mediterranean Region, Springer. Part of NATO Science for Peace and Security Series C: Environmental Security.
Lionello, 2018, The relation between climate change in the Mediterranean region and global warming, Reg. Environ. Chang., 18, 1481, 10.1007/s10113-018-1290-1
Cos, 2022, The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections, Earth Syst. Dynam., 13, 321, 10.5194/esd-13-321-2022
Zheng, 2021, Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review, Food Res. Int., 139, 109946, 10.1016/j.foodres.2020.109946
Fraga, 2017, Viticulture in Portugal: A review of recent trends and climate change projections, OENO ONE, 51, 61, 10.20870/oeno-one.2017.51.2.1621
(2023, January 05). Official Bulletin Apulia Region–n. 198, 22–12–2011. Technical files of DOP and IGP Wines from the Puglia Region. Disciplinary Production of Consolidated Wines. Available online: http://cartografia.sit.puglia.it/doc/BURP_vini_consolidati_disciplinare.pdf.
(2023, January 05). Official Bulletin Apulia Region–n. 105, 17–9–2003. Regional Classification of Grape Varieties for the Production of Wine. Available online: https://filiereagroalimentari.regione.puglia.it/documents/1662405/2632836/DGR+1371_2003.pdf/1fb5f0a1–71b6–bd88–0f8d–9f38936ecdf1?t=1646127834695.
(2023, January 05). ISTAT. Istituto Nazionale di Statistica. Available online: http://dati.istat.it/.
Macqueen, R.W., and Meinert, L.D. (2006). The Geoscience Perspective, Geological Association of Canada. Number 9.
Huglin, 1978, Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole, Comptes Rendus De L’académie D’agriculture De Fr, 64, 1117
Winkler, A.J., Cook, J., Kliewer, W.M., and Lider, L.A. (1974). General Viticulture, University of California Press.
Dinu, D.G., Ricciardi, V., Demarco, C., Zingarofalo, G., De Lorenzis, G., Buccolieri, R., Cola, G., and Rustioni, L. (2021). Climate Change Impacts on Plant Phenology: Grapevine (Vitis vinifera) Bud Break in Wintertime in Southern Italy. Foods, 10.
Tonietto, 2004, A multicriteria climatic classification system for grape–growing regions worldwide, Agric. For. Meteorol., 124, 81, 10.1016/j.agrformet.2003.06.001
Masson–Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. Available online: https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf.
Eyring, 2016, Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model. Dev., 9, 1937, 10.5194/gmd-9-1937-2016
Gidden, 2019, Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century, Geosci. Model. Dev., 12, 1443, 10.5194/gmd-12-1443-2019
Santos, J.A., Fraga, H., Malheiro, A.C., Moutinho–Pereira, J., Dinis, L.-T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., and Costafreda–Aumedes, S. (2020). A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci., 10.
Hausfather, 2020, Emissions—The ‘business as usual’ story is misleading, Nature, 577, 618, 10.1038/d41586-020-00177-3
Scafetta, N. (2022). CMIP6 GCM ensemble members versus global surface temperatures. Clim. Dynam., 1–30.
Almazroui, 2021, Projected Changes in Temperature and Precipitation Over the United States, Central America, and the Caribbean in CMIP6 GCMs, Earth Syst. Environ., 5, 1, 10.1007/s41748-021-00199-5
Di Virgilio, G., Ji, F., Tam, E., Nishant, N., Evans, J.P., Thomas, C., Riley, M.L., Beyer, K., Grose, M.R., and Narsey, S. (2022). Selecting CMIP6 GCMs for CORDEX dynamical downscaling: Model performance, independence, and climate change signals. Earth’s Future, 10.
Cotecchia, 2014, Caratteri climatici. Chapt. 7, Memorie Descrittive Della Carta Geologica d’Italia, Volume 92, 338
Fick, 2017, WorldClim 2: New 1km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302, 10.1002/joc.5086
Attorre, 2007, Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale, Int. J. Climatol., 27, 1825, 10.1002/joc.1495
(2023, January 05). C3S Climate Bulletin. Copernicus Climate Change System. Changing the reference period from 1981–2020 to 1991–2020 for the C3S Climate Bulletin. Available online: https://climate.copernicus.eu/sites/default/files/2021–02/C3S_Climate_Bulletin_change_from_1981–2010_to_1991–2020_reference_period_v08–Feb–20_all.pdf.
Koufos, 2018, Response of viticulture–related climatic indices and zoning to historical and future climate conditions in Greece, Int. J. Climatol., 38, 2097, 10.1002/joc.5320
Cavazos, 2012, Downscaled Climate Change Scenarios for Baja California and the North American Monsoon during the Twenty–First Century, J. Clim., 25, 5904, 10.1175/JCLI-D-11-00425.1
Webb, 2007, Modelled impact of future climate change on the phenology of winegrapes in Australia, Aust. J. Grape Wine Res., 13, 165, 10.1111/j.1755-0238.2007.tb00247.x
Droulia, F., and Charalampopoulos, I. (2021). Future climate change impacts on European viticulture: A review on recent scientific advances. Atmosphere, 12.
Jones, G.V., White, M.A., Cooper, O.R., and Storchmann, K.-H. (, January May). Climate and wine: Quality issues in a warmer world. Proceedings of the Vineyard Data Quantification Society’s 10th OEonometrics Meeting, Dijon, France. Available online: https://www.researchgate.net/publication/267855409_Climate_and_Wine_Quality_Issues_in_a_Warmer_World.
Arias, 2022, Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy, Front. Plant Sci., 13, 835425, 10.3389/fpls.2022.835425
Fraga, 2012, An overview of climate change impacts on European viticulture, Food Energy Secur., 1, 94, 10.1002/fes3.14
Schultz, 2016, Global climate change, sustainability, and some challenges for grape and wine production, J. Wine Econ., 11, 181, 10.1017/jwe.2015.31
Ruml, 2019, Future climatic suitability of the Emilia–Romagna (Italy) region for grape production, Reg. Environ. Chang., 19, 599, 10.1007/s10113-018-1431-6
Bai, 2022, Historical long–term cultivar × climate suitability data to inform viticultural adaptation to climate change, Sci. Data, 9, 271, 10.1038/s41597-022-01367-6
Piña–Rey, A., González–Fernández, E., Fernández–González, M., Lorenzo, M.A., and Rodríguez–Rajo, F.J. (2020). Climate Change Impacts Assessment on Wine–Growing Bioclimatic Transition Areas. Agriculture, 10.
Hayes, 2014, Multi–GCM projections of future drought and climate variability indicators for the Mediterranean region, Reg. Environ. Chang., 14, 1907, 10.1007/s10113-013-0562-z
Nesbitt, 2016, Impact of recent climate change and weather variability on the viability of UK viticulture—Combining weather and climate records with producers’ Perspectives, Aust. J. Grape Wine Res., 22, 324, 10.1111/ajgw.12215
Cardell, 2019, Future effects of climate change on the suitability of wine grape production across Europe, Reg. Environ. Chang., 19, 2299, 10.1007/s10113-019-01502-x
van Leeuwen, C., Destrac–Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., Pieri, P., Parker, A., de Rességuier, L., and Ollat, N. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9.
Pascuzzi, 2013, The effects of the forward speed and air volume of an air–assisted sprayer on spray deposition in tendone trained vineyards, J. Agric. Eng., 49, 125