Biochemical properties of a native β-1,4-mannanase from Aspergillus aculeatus QH1 and partial characterization of its N-glycosylation
Tài liệu tham khảo
Varki, 2009
Molinari, 2007, N-glycan structure dictates extension of protein folding or onset of disposal, Nat. Chem. Biol., 3, 313, 10.1038/nchembio880
Helenius, 2001, Intracellular functions of N-linked glycans, Science, 291, 2364, 10.1126/science.291.5512.2364
Skropeta, 2009, The effect of individual N-glycans on enzyme activity, Bioorg. Med. Chem., 17, 2645, 10.1016/j.bmc.2009.02.037
Mäkelä, 2014, Plant biomass degradation by fungi, Fungal Genet. Biol., 72, 2, 10.1016/j.fgb.2014.08.010
Rubio, 2016, Mapping N - linked glycosylation of carbohydrate - active enzymes in the secretome of Aspergillus nidulans grown on lignocellulose, Biotechnol. Biofuels, 1
Wang, 2012, Mapping N-linked glycosylation sites in the secretome and whole cells of Aspergillus niger using hydrazide chemistry and mass spectrometry, J. Proteome Res., 11, 143, 10.1021/pr200916k
Beckham, 2012, Harnessing glycosylation to improve cellulase activity, Curr. Opin. Biotechnol., 23, 338, 10.1016/j.copbio.2011.11.030
Hui, 2002, Identification of glycan structure and glycosylation sites in cellobiohydrolase II and endoglucanases I and II from Trichoderma reesei, Glycobiology, 12, 837, 10.1093/glycob/cwf089
Amore, 2017, Distinct roles of N- and O-glycans in cellulase activity and stability, Proc. Natl. Acad. Sci. U. S. A, 114, 13667, 10.1073/pnas.1714249114
Harrison, 2002, Glycosylation of acetylxylan esterase from Trichoderma reesei, Glycobiology, 12, 291, 10.1093/glycob/12.4.291
Brite Svensson, 1983, The complete amino acid sequence of the glycoprotein , glucoamylase G1 from Aspergillus niger, Carlsberg Res. Commun., 48, 529, 10.1007/BF02907555
Brite Svensson, 1983, Amino acid sequence of tryptic fragments of glucoamylase G1 from Aspergillus niger, Carlsberg Res. Commun., 48, 517, 10.1007/BF02908694
Chen, 1994, Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation, Biochem. J., 301, 275, 10.1042/bj3010275
Scheller, 2010, Annu. Rev. Plant Biol., 61, 263, 10.1146/annurev-arplant-042809-112315
Yamabhai, 2016, Mannan biotechnology: from biofuels to health, Crit. Rev. Biotechnol., 36, 32, 10.3109/07388551.2014.923372
Couturier, 2013, Structural and biochemical analyses of glycoside hydrolase families 5 and 26 β-(1,4)-mannanases from Podospora anserina reveal differences upon manno-oligosaccharide catalysis, J. Biol. Chem., 288, 14624, 10.1074/jbc.M113.459438
Srivastava, 2017, Production , properties , and applications of endo - β -mannanases, Biotechnol. Adv., 35, 1, 10.1016/j.biotechadv.2016.11.001
Dhawan, 2007, Microbial Mannanases : an overview of production and applications, Crit. Rev. Biotechnol., 27, 197, 10.1080/07388550701775919
Moreira, 2008, An overview of mannan structure and mannan-degrading enzyme systems, Appl. Microbiol. Biotechnol., 79, 165, 10.1007/s00253-008-1423-4
Bewley, 1997, Breaking down the walls - a role for endo-β-mannanase in release from seed dormancy?, Trends Plant Sci., 2, 464, 10.1016/S1360-1385(97)01147-3
Filichkin, 2004, A novel endo-β-mannanase gene in tomato LeMAN5 is associated with anther and pollen development, Plant Physiol., 134, 1080, 10.1104/pp.103.035998
Kubicek, 2014, Plant cell wall–degrading enzymes and their secretion in plant-pathogenic fungi, Annu. Rev. Phytopathol., 52, 427, 10.1146/annurev-phyto-102313-045831
Setati, 2001, Expression of the Aspergillus aculeatus endo- b-1,4-mannanase encoding gene (man1) in Saccharomyces cerevisiae and characterization of the recombinant Enzyme, Protein Expr. Purif., 21, 105, 10.1006/prep.2000.1371
Van Zyl, 2009, Production of the Aspergillus aculeatus endo-1,4-b-mannanase in A Niger, J. Ind. Microbiol. Biotechnol., 36, 611, 10.1007/s10295-009-0551-x
Roth, 2009, Heterologous expression and optimized production of an Aspergillus aculeatus endo-1,4- b-mannanase in Yarrowia lipolytica, Mol. Biotechnol., 43, 112, 10.1007/s12033-009-9187-3
2006
Tani, 2014, Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi, Appl. Microbiol. Biotechnol., 98, 4829, 10.1007/s00253-014-5707-6
Miller, 1959, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 31, 426, 10.1021/ac60147a030
Downie, 1994, A new assay for quantifying endo-β-d-mannanase activity using Congo red dye, Phytochemistry, 36, 829, 10.1016/S0031-9422(00)90446-1
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, 10.1038/227680a0
Kapitany, 1973, A high resolution gel PAS stain for polyacrylamide electrophoresis, Anal. Biochem., 369, 361, 10.1016/0003-2697(73)90202-9
Shevchenko, 2007, In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat. Protoc., 1, 2856, 10.1038/nprot.2006.468
Dalbøge, 1994, Expression cloning, purification and characterization of a beta-1,4-mannanase from Aspergillus aculeatus, Biochem. Mol. Biol. Int., 33, 917
Aspeborg, 2012, Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5), BMC Evol. Biol., 12, 186, 10.1186/1471-2148-12-186
Wang, 2019, A processive endoglucanase with multi-substrate specificity is characterized from porcine gut microbiota, Sci. Rep., 1
Ding, 2012, How does plant cell wall nanoscale architecture correlate with enzymatic digestibility, Science, 338, 1055, 10.1126/science.1227491
Naganagouda, 2009, Purification and characterization of endo-β-1,4 mannanase from Aspergillus niger gr for application in food processing industry, J. Microbiol. Biotechnol., 19, 1184
Wang, 2014, Elucidation of the molecular basis for arabinoxylan-debranching activity of a thermostable family GH62 α-L-arabinofuranosidase from Streptomyces thermoviolaceus, Appl. Environ. Microbiol., 80, 5317, 10.1128/AEM.00685-14
Zielinska, 2010, Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints, Cell, 141, 897, 10.1016/j.cell.2010.04.012