Biochemical profiling of three indigenous Dunaliella isolates with main focus on fatty acid composition towards potential biotechnological application

Biotechnology Reports - Tập 26 - Trang e00479 - 2020
Nahid Hosseinzadeh Gharajeh1, Mostafa Valizadeh1, Ebrahim Dorani1, Mohammad Amin Hejazi2
1Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2Department of Food Biotechnology, Branch for Northwest & West region, Agricultural Biotehnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fu, 2017, Bioactive compounds from microalgae: current development and prospects, 199, 10.1016/B978-0-444-63929-5.00006-1

Bhosale, 2010, Dunaliella salina Teod. As a prominent source of eicosapentaenoic acid, Int. J. Algae, 12, 10.1615/InterJAlgae.v12.i2.70

Khan, 2017

Avron, 1992

Dufossé, 2005, Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality?, Trends Food Sci. Technol., 16, 389, 10.1016/j.tifs.2005.02.006

Hosseini Tafreshi, 2009, Dunaliella biotechnology: methods and applications, J. Appl. Microbiol., 107, 14, 10.1111/j.1365-2672.2009.04153.x

Sui, 2020, Dunaliella microalgae for nutritional protein: an undervalued asset, Trends Biotechnol., 38, 10, 10.1016/j.tibtech.2019.07.011

Torres, 2008, Biochemical biomarkers in algae and marine pollution: a review, Ecotoxicol. Environ. Saf., 71, 1, 10.1016/j.ecoenv.2008.05.009

Sedjati, 2019, Chlorophyll and carotenoid content of dunaliella salina at various salinity stress and harvesting time

Koyande, 2019, Microalgae: a potential alternative to health supplementation for humans, Food Sci. Hum. Wellness, 8, 124, 10.1016/j.fshw.2019.03.001

Schwenzfeier, 2011, Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp, Bioresour. Technol., 102, 9121, 10.1016/j.biortech.2011.07.046

Nehete, 2013, Natural proteins: sources, isolation, characterization and applications, Pharmacogn. Rev., 7, 107, 10.4103/0973-7847.120508

Dere, 2003, The determination of total protein, total soluble carbohydrate and pigment contents of some macroalgae collected from Gemlik-Karacaali (Bursa) and Erdek-Ormanli (Balikesir) in the Sea of Marmara, Turkey, Oceanologia, 45

Huerlimann, 2010, Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale‐up production, Biotechnol. Bioeng., 107, 245, 10.1002/bit.22809

Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001

Taşbozan, 2017, Fatty acids in fish, Fatty Acids, 1, 143

Arts, 2009

Bender, 2016

Bender, 2006

El-Wakf, 2010, Association between inflammation and the risk of cardiovascular disorders in atherogenic male rats: role of virgin and refined olive oil, J. Am. Sci., 6, 807

HOSSEINI, 2011, Influence of different layer rations on atherogenesis and thrombogenesis indices in egg yolks, J. Birjand Univ. Med. Sci., 17, 265

Adarme-Vega, 2012, Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production, Microb. Cell Fact., 11, 96, 10.1186/1475-2859-11-96

Minhas, 2016, A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids, Front. Microbiol., 7, 546, 10.3389/fmicb.2016.00546

Adarme-Vega, 2014, Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp, Mar. Drugs, 12, 3381, 10.3390/md12063381

Gharajeh, 2018

Safa Eisini, 2014, Determination of germination parameters of mangrove forest in Koolghan, Tiab and Kolahi areas in the Persian Gulf, J. Oceanogr., 5, 71

Hejazi, 2010, Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella, Saline Syst., 6, 4, 10.1186/1746-1448-6-4

Du, 2016, Photonfluxostat: a method for light-limited batch cultivation of cyanobacteria at different, yet constant, growth rates, Algal Res., 20, 118, 10.1016/j.algal.2016.10.004

Lichtenthaler, 2001, Chlorophylls and carotenoids: measurement and characterization by UV‐VIS spectroscopy, Curr. Protoc. Food Anal. Chem., 1, 10.1002/0471142913.faf0403s01

Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3

Sheligl, 1986, Die verwertung orgngischer souren durch chlorella lincht, Planta J., 47, 51

Yang, 2014, A novel lipid extraction method from wet microalga Picochlorum sp. at room temperature, Mar. Drugs, 12, 1258, 10.3390/md12031258

Duong, 2015, Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland—australia, Front. Plant Sci., 6, 359, 10.3389/fpls.2015.00359

Attia, 2015, Fatty acid and cholesterol profiles and hypocholesterolemic, atherogenic, and thrombogenic indices of table eggs in the retail market, Lipids Health Dis., 14, 136, 10.1186/s12944-015-0133-z

Lopes, 2014, Fatty acid profile, quality lipid index and bioactive compounds of flour from grape residues, Ciencia e Investigación Agraria, 41, 225, 10.4067/S0718-16202014000200008

Šimat, 2015, Changes in fatty acid composition, atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus, 1758) during storage on ice: effect of fish farming activities, J. Food Compos. Anal., 40, 120, 10.1016/j.jfca.2014.12.026

Ramos, 2009, Influence of fatty acid composition of raw materials on biodiesel properties, Bioresour. Technol., 100, 261, 10.1016/j.biortech.2008.06.039

Francisco, 2010, Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality, J. Chem. Technol. Biotechnol., 85, 395, 10.1002/jctb.2338

Møller, 2011, Fatty acid molecular weights, Danish Food Inf, 1

Gatamaneni, 2018, Factors affecting growth of various microalgal species, Environ. Eng. Sci., 35, 1037, 10.1089/ees.2017.0521

Saha, 2018, The carotenogenic Dunaliella salina CCAP 19/20 produces enhanced levels of carotenoid under specific nutrients limitation, Biomed Res. Int., 2018, 10.1155/2018/7532897

Hage, 2018, Phycoremediation of municipal wastewater by the cold-adapted microalga Monoraphidium sp. Dek19: Hage et al, Water Environ. Res., 90, 1938, 10.2175/106143017X15131012188060

García-González, 2003, Conditions for open-air outdoor culture of Dunaliella salina in southern Spain, J. Appl. Phycol., 15, 177, 10.1023/A:1023892520443

Roy, 2015, Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics, 1

Ünlü, 2014, State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I, Proc. Natl. Acad. Sci. U. S. A., 111, 3460, 10.1073/pnas.1319164111

Muhaemin, 2010, Biomass nutrient profiles of marine microalgae Dunaliella salina, Jurnal Penelitian Sains, 13

Kent, 2015, Nutritional evaluation of Australian microalgae as potential human health supplements, PLoS One, 10, 10.1371/journal.pone.0118985

Žnidarčič, 2011, Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries, Food Chem., 129, 1164, 10.1016/j.foodchem.2011.05.097

Bishop, 2012, Evaluation of microalgae for use as nutraceuticals and nutritional supplements, J. Nutr. Food Sci., 2, 1

Begum, 2016, Availability and utilization of pigments from microalgae, Crit. Rev. Food Sci. Nutr., 56, 2209, 10.1080/10408398.2013.764841

Sathasivam, 2018, A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries, Mar. Drugs, 16, 26, 10.3390/md16010026

Barbarino, 2005, An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae, J. Appl. Phycol., 17, 447, 10.1007/s10811-005-1641-4

Slocombe, 2013, A rapid and general method for measurement of protein in micro-algal biomass, Bioresour. Technol., 129, 51, 10.1016/j.biortech.2012.10.163

Phillips, 2011

Becker, 2007, Micro-algae as a source of protein, Biotechnol. Adv., 25, 207, 10.1016/j.biotechadv.2006.11.002

Barka, 2016

Christaki, 2011, Microalgae: a novel ingredient in nutrition, Int. J. Food Sci. Nutr., 62, 794, 10.3109/09637486.2011.582460

Milledge, 2011, Commercial application of microalgae other than as biofuels: a brief review, Rev. Environ. Sci. Biotechnol., 10, 31, 10.1007/s11157-010-9214-7

Van Krimpen, 2013

Wolkers, 2011

Bleakley, 2017, Algal proteins: extraction, application, and challenges concerning production, Foods, 6, 33, 10.3390/foods6050033

Chew, 2017, Microalgae biorefinery: high value products perspectives, Bioresour. Technol., 229, 53, 10.1016/j.biortech.2017.01.006

Lam, 2012, Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production, Appl. Energy, 94, 303, 10.1016/j.apenergy.2012.01.075

Ahmed, 2017, Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production, Sci. Rep., 7, 8118, 10.1038/s41598-017-07540-x

Hu, 2008, Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J., 54, 621, 10.1111/j.1365-313X.2008.03492.x

Shanab, 2018, A review on algae and plants as potential source of arachidonic acid, J. Adv. Res., 11, 3, 10.1016/j.jare.2018.03.004

Fakhry, 2013, Fatty acids composition and biodiesel characterization of Dunaliella salina, J. Water Resour. Prot., 5, 894, 10.4236/jwarp.2013.59091

El-Baky, 2004, Production of lipids rich in omega 3 fatty acids from the halotolerant alga Dunaliella salina, Biotechnology, 3, 102, 10.3923/biotech.2004.102.108

Cakmak, 2014, Biochemical composition and bioactivity screening of various extracts from Dunaliella salina, a green microalga, EXCLI J., 13, 679

Shenbaga Devi, 2012, Culture and biofuel producing efficacy of marine microalgae Dunaliella salina and Nannochloropsis sp, J. Algal Biomass Util, 3, 38

Rasoul-Amini, 2014, Biodiesel properties of native strain of Dunaliella salina, Int. J. Renew. Energy Res. (IJRER), 4, 39

Sohi, 2014, Biodiesel production using marine microalgae Dunaliella salina, J. Biodivers. Environ. Sci., 4, 177

Mendoza, 1996, Low-temperature-induced β-carotene and fatty acid synthesis, and ultrastructural reorganization of the chloroplast in Dunaliella salina (Chlorophyta), Eur. J. Phycol., 31, 329, 10.1080/09670269600651551

Lamers, 2010, Carotenoid and fatty acid metabolism in light‐stressed Dunaliella salina, Biotechnol. Bioeng., 106, 638, 10.1002/bit.22725

Siron, 1989, Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency, Mar. Ecol. Prog. Ser., 95, 10.3354/meps055095

Lee, 2014, Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases, Process. Biochem., 49, 996, 10.1016/j.procbio.2014.02.022

Moseley, 1980, Lipid composition and metabolism of Volvox carteri, Plant Physiol., 65, 260, 10.1104/pp.65.2.260

Pflaster, 2014, A high-throughput fatty acid profiling screen reveals novel variations in fatty acid biosynthesis in Chlamydomonas reinhardtii and related algae, Eukaryot. Cell, 13, 1431, 10.1128/EC.00128-14

Tokuşoglu, 2003, Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana, J. Food Sci., 68, 1144, 10.1111/j.1365-2621.2003.tb09615.x

Lands, 2014, Historical perspectives on the impact of n-3 and n-6 nutrients on health, Prog. Lipid Res., 55, 17, 10.1016/j.plipres.2014.04.002

Mori, 1999, Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans, Hypertension, 34, 253, 10.1161/01.HYP.34.2.253

Parker, 2006, Omega-3 fatty acids and mood disorders, Am. J. Psychiatry, 163, 969, 10.1176/ajp.2006.163.6.969

Mühlroth, 2013, Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista, Mar. Drugs, 11, 4662, 10.3390/md11114662

Anitha, 2018, Modulation of lipid productivity under nitrogen, salinity and temperature stress in microalgae Dunaliella sp, J. Environ. Biol., 39, 625, 10.22438/jeb/39/5/MRN-761

Sahin, 2018, Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions, AMB Express, 8, 7, 10.1186/s13568-018-0540-4

Rubio-Rodríguez, 2010, Production of omega-3 polyunsaturated fatty acid concentrates: a review, Innov. Food Sci. Emerg. Technol., 11, 1, 10.1016/j.ifset.2009.10.006

Simopoulos, 2003, 1

Grela, 2014, Correlations between cholesterol content, fatty acid composition and health lipid indices in fat of chosen tissues and organs of finishing pigs, Pol. J. Vet. Sci., 17, 535, 10.2478/pjvs-2014-0080

Aussant, 2018, Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae, Appl. Microbiol. Biotechnol., 102, 5279, 10.1007/s00253-018-9001-x

Cohen, 2003, Human population: the next half century, Science, 302, 1172, 10.1126/science.1088665

Gharibi, 2016, Retracted: Effect of concentration of the microalga Dunaliella tertiolecta on survival and growth of fairy shrimp, Phallocryptus spinosa Milne Edwards, 1840 (C rustacea: A nostraca), Aquac. Res., 47, 2976, 10.1111/are.12749

Fernandez-Jover, 2011, Monitoring the influence of marine aquaculture on wild fish communities: benefits and limitations of fatty acid profiles, Aquac. Environ. Interact., 2, 39, 10.3354/aei00029

Martínez-Soto, 2016, Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation, Syst. Biol. Reprod. Med., 62, 387, 10.1080/19396368.2016.1246623

Martínez‐Soto, 2013, Spermatozoa and seminal plasma fatty acids as predictors of cryopreservation success, Andrology, 1, 365, 10.1111/j.2047-2927.2012.00040.x

Kaur, 2014, Essential fatty acids as functional components of foods-a review, J. Food Sci. Technol., 51, 2289, 10.1007/s13197-012-0677-0

Karpagam, 2015, Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production, Ecotoxicol. Environ. Saf., 121, 253, 10.1016/j.ecoenv.2015.03.015

Byreddy, 2015, Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains, Mar. Drugs, 13, 5111, 10.3390/md13085111

Rós, 2013, Assessment of chemical and physico-chemical properties of cyanobacterial lipids for biodiesel production, Mar. Drugs, 11, 2365, 10.3390/md11072365

Fuels, 2008

ASTM Standard, 2008