Biochemical hydrogen and methane potential of sugarcane syrup using a two-stage anaerobic fermentation process

Industrial Crops and Products - Tập 82 - Trang 88-99 - 2016
Chatchawin Nualsri1, Alissara Reungsang1,2, Pensri Plangklang1
1Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
2Research Group for Development of Microbial Hydrogen Production Process from Biomass Khon Kaen University, Khon Kaen, 40002, Thailand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389

Anjana, 2014, Enhanced hydrogen production by immobilized cyanobacterium Lyngbya perelegans under varying anaerobic conditions, Biomass Bioenergy, 63, 54, 10.1016/j.biombioe.2014.01.019

Antonopoulou, 2008, Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass, Bioresour. Technol., 99, 110, 10.1016/j.biortech.2006.11.048

APHA, 1995

Argun, 2011, Bio-hydrogen production by different optional modes of dark and photo-fermentation: an overview, Int. J. Hydrog. Energy, 36, 7443, 10.1016/j.ijhydene.2011.03.116

Banks, 2010, Biphasic production of hydrogen and methane from waste lactose in cyclic-batch reactors, J. Clean. Prod., 18, S95, 10.1016/j.jclepro.2010.04.018

Cappelletti, 2011, Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum, Renew. Energy, 36, 3367, 10.1016/j.renene.2011.05.015

Cazetta, 2007, Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production, Bioresour. Technol., 98, 2824, 10.1016/j.biortech.2006.08.026

Cheng, 2011, Hydrogen production by mixed bacteria through dark and photo fermentation, Int. J. Hydrog. Energy, 36, 450, 10.1016/j.ijhydene.2010.10.007

Chu, 2012, Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process, Int. J. Hydrog. Energy, 37, 10611, 10.1016/j.ijhydene.2012.04.048

Das, 2001, Hydrogen production by biological process: a survey of literature, Int. J. Hydrog. Energy, 26, 13, 10.1016/S0360-3199(00)00058-6

Dhaliwal, 2011, Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii, Bioresour. Technol., 102, 5968, 10.1016/j.biortech.2011.02.015

DiStefano, 2010, Effect of anaerobic reactor process configuration on useful energy production, Water Res., 44, 2583, 10.1016/j.watres.2010.01.010

Dubois, 1956, Phenol sulfuric total sugar, Anal. Chem., 28, 350, 10.1021/ac60111a017

Endo, 1982, Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion, Proc. Jpn. Soc. Civ. Eng., 325, 61, 10.2208/jscej1969.1982.325_61

Fang, 2002, Effect of pH on hydrogen production from glucose by a mixed culture, Bioresour. Technol., 82, 87, 10.1016/S0960-8524(01)00110-9

Giordano, 2011, Monitoring the biochemical hydrogen and methane potential of the two-stage dark-fermentative process, Bioresour. Technol., 102, 4474, 10.1016/j.biortech.2010.12.106

Hallenbeck, 2009, Fermentative hydrogen production: principles, progress, and prognosis, Int. J. Hydrog. Energy, 34, 7379, 10.1016/j.ijhydene.2008.12.080

Hallenbeck, 2009, Advances in fermentative biohydrogen production: the way forward?, Trends Biotechnol., 27, 287, 10.1016/j.tibtech.2009.02.004

Intanoo, 2014, Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation, Bioresour. Technol., 173, 256, 10.1016/j.biortech.2014.09.039

Jiang, 2013, Bioproduction of hydrogen by simultaneous saccharification and fermentation of cassava starch with 2-deoxyglucose-resistant mutant strains of Clostridium tyrobutyricum, Int. J. Hydrog. Energy, 38, 6349, 10.1016/j.ijhydene.2013.02.109

Khanal, 2004, Biological hydrogen production: effects of pH and intermediate products, Int. J. Hydrog. Energy, 29, 1123

Khanal, 2008

Kivisto, 2010, Hydrogen production from glycerol using halophilic fermentative bacteria, Bioresour. Technol., 101, 8671, 10.1016/j.biortech.2010.06.066

Kongjan, 2010, Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture, Biotechnol. Bioeng., 105, 899, 10.1002/bit.22616

Kumari, 2015, Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process, Bioresour. Technol., 194, 354, 10.1016/j.biortech.2015.07.038

Laopaiboon, 2009, Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations, Bioresour. Technol., 100, 4176, 10.1016/j.biortech.2009.03.046

Levin, 2004, Biohydrogen production and limitations to practical application, Int. J. Hydrog. Energy, 29, 173, 10.1016/S0360-3199(03)00094-6

Limtong, 2007, Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus, Bioresour. Technol., 98, 3367, 10.1016/j.biortech.2006.10.044

Liu, 2004, On-line monitoring of a two-stage anaerobic digestion process using a BOD analyzer, J. Biotechnol., 109, 263, 10.1016/j.jbiotec.2003.11.014

Liu, 2012, Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock, Int. J. Hydrog. Energy, 37, 15458, 10.1016/j.ijhydene.2012.04.076

Lo, 2008, Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies, Water Res., 42, 827, 10.1016/j.watres.2007.08.023

Mamimin, 2015, Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent, Int. J. Hydrog. Energy, 40, 6319, 10.1016/j.ijhydene.2015.03.068

Mao, 2015, Review on research achievements of biogas from anaerobic digestion, Renew. Sustain. Energy Rev., 45, 540, 10.1016/j.rser.2015.02.032

Morsy, 2014, Hydrogen production by Escherichia coli without nitrogen sparging and subsequent use of the waste culture for fast mass scale one-pot green synthesis of silver nanoparticles, Int. J. Hydrog. Energy, 39, 11902, 10.1016/j.ijhydene.2014.06.007

Mosey, 1989, Patterns of hydrogen in biogas from the anaerobic-digestion of milk-sugars, Water Sci. Technol., 21, 187, 10.2166/wst.1989.0222

Noike, 2002, Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria, Int. J. Hydrog. Energy, 27, 1367, 10.1016/S0360-3199(02)00120-9

Office of The Cane and Sugar Board, 2014. Summarize of the area for sugarcane field in Thailand 2013–2014. Available from, www.ocsb.go.th/upload/journal/fileupload/923-2469.pdf (accessed 08.12.14.).

Ortigueira, 2015, Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass, Fuel, 153, 128, 10.1016/j.fuel.2015.02.093

Owen, 1979, Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Res., 13, 485, 10.1016/0043-1354(79)90043-5

Patel, 2014, Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter, Int. J. Hydrog. Energy, 39, 14663, 10.1016/j.ijhydene.2014.07.084

Pattra, 2008, Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum, Int. J. Hydrog. Energy, 33, 5256, 10.1016/j.ijhydene.2008.05.008

Pattra, 2011, Performance and population analysis of hydrogen production from sugarcane juice by non-sterile continuous stirred tank reactor augmented with Clostridium butyricum, Int. J. Hydrog. Energy, 36, 8697, 10.1016/j.ijhydene.2010.05.120

Plangklang, 2012, Enhanced bio-hydrogen production from sugarcane juice by immobilized Clostridium butyricum on sugarcane bagasse, Int. J. Hydrog. Energy, 37, 15525, 10.1016/j.ijhydene.2012.02.186

Rachman, 1998, Hydrogen production with high yield and high evolution rate by self-flocculated cell of Enterobacter aerogenes in a packed-bed reactor, Appl. Microbiol. Biotechnol., 49, 450, 10.1007/s002530051197

Reungsang, 2013, Bio-hydrogen production from glycerol by immobilized Enterobacter aerogenes ATCC 13048 on heat-treated UASB granules as affected by organic loading rate, Int. J. Hydrog. Energy, 38, 6970, 10.1016/j.ijhydene.2013.03.082

Sasaki, 2014, Increased ethanol production from sweet sorghum juice concentrated by a membrane separation process, Bioresour. Technol., 169, 821, 10.1016/j.biortech.2014.07.082

Seol, 2011, Sustained hydrogen production from formate using immobilized recombinant Escherichia coli SH5, Int. J. Hydrog. Energy, 36, 8681, 10.1016/j.ijhydene.2010.05.118

Seppala, 2011, Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures, Int. J. Hydrog. Energy, 36, 10701, 10.1016/j.ijhydene.2011.05.189

Sun, 2015, Hydrogen production by Enterobacter cloacae isolated from sugar refinery sludge, Int. J. Hydrog. Energy, 40, 1402, 10.1016/j.ijhydene.2014.11.121

United States Energy Information Administration, 2015. Today in energy. Available from, http://www.eia.gov/todayinenergy/prices.cfm (accessed 08.11.15.).

United States Environmental Protection Agency, 2015. Compare fuel cell vehicles. Available from, http://www.fueleconomy.gov/feg/fcv_sbs.shtml (accessed 08.11.15.).

Wang, 2013, Simultaneous coproduction of hydrogen and methane from sugary wastewater by an ACSTRH-UASBMet system, Int. J. Hydrog. Energy, 38, 7774, 10.1016/j.ijhydene.2013.04.065

Wang, 2013, Enhanced ethanol production by continuous fermentation in a two-tank system with cell recycling, Process Biochem., 48, 1425, 10.1016/j.procbio.2013.06.023

Ward, 2008, Optimisation of the anaerobic digestion of agricultural resources, Bioresour. Technol., 99, 7928, 10.1016/j.biortech.2008.02.044

Xu, 2014, In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion, Bioresour. Technol., 163, 186, 10.1016/j.biortech.2014.04.037

Zhang, 2000, Digitization of DGGE (denaturing gradient gel electrophoresis) profile and cluster analysis of microbial communities, Biotechnol. Lett., 22, 399, 10.1023/A:1005680803442

Zhao, 2012, Enhanced bio-hydrogen production by immobilized Clostridium sp. T2 on a new biological carrier, Int. J. Hydrog. Energy, 37, 162, 10.1016/j.ijhydene.2011.09.103

Zheng, 2005, Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures, J. Environ. Manag., 74, 65, 10.1016/j.jenvman.2004.08.015