Đặc Tính Hóa Sinh và Chức Năng của Các Hydrolysate Protein Đậu Thận Xử Lý bởi Alcalase và Khả Năng Bảo Quản của Chúng trên Thịt Gà Lưu Trữ

Springer Science and Business Media LLC - Tập 26 Số 15 - Trang 4690
Ahmed M. Saad1, Mahmoud Sitohy1, Alshaymaa I. Ahmed2, Nourhan A. Rabie3, Shimaa A. Amin4, Salama Mostafa Aboelenin5, Mohamed Mohamed Soliman6, Mohamed T. El‐Saadony7
1Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
2Department of Agricultural Microbiology, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62511, Egypt.
3Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
4Department of Agricultural Microbiology, Faculty of Agriculture, Ain-Shams University, Cairo 11566, Egypt.
5Biology Department, Turabah University College, Taif University, P.O. Box 1109, Taif 21944, Saudi Arabia.
6Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
7Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt

Tóm tắt

Một phương pháp bảo quản mới được trình bày trong bài báo này nhằm kéo dài tuổi thọ của thịt gà sống và cải thiện chất lượng ở 4 °C thông qua việc phủ bằng hydrolysate protein đậu thận hòa tan cao. Hydrolysates của các loại protein đậu thận đen, đỏ và trắng (BKH, RKH và WKH) được thu nhận sau 30 phút thủy phân enzym với Alcalase (tỷ lệ E/S là 1:100, độ thủy phân từ 25–29%). Các tiểu đơn vị phaseolin khác nhau (8S) xuất hiện trong SDS-PAGE ở khoảng trọng lượng phân tử từ 35–45 kD trong khi vicilin xuất hiện trong khoảng trọng lượng phân tử từ 55–75 kD. Hydrolysates protein đậu thận có hoạt tính chống oxy hóa đáng kể, được minh chứng qua hoạt động loại bỏ DPPH và phép thử β-carotine-linolenic, cũng như hoạt tính kháng khuẩn được đánh giá bằng phương pháp khuếch tán đĩa. BKH tiếp theo là RKH (800 µg/mL) có hoạt động loại bỏ 95, 91% DPPH và ức chế 82–88% quá trình oxy hóa linoleic một cách đáng kể (p ≤ 0.05). Ba loại hydrolysate đã được nghiên cứu đều đáng kể ức chế sự phát triển của vi khuẩn, nấm men và nấm mốc, với BKH có hiệu suất tốt nhất. Các hydrolysate protein đậu thận có thể bảo vệ thịt gà nhờ tính chất lưỡng tính của chúng và nhiều đặc tính chức năng (khả năng hấp thu nước và dầu, và độ ổn định tạo bọt). Chất lượng thịt gà được đánh giá qua việc theo dõi sự biến động của các thông số hóa học (pH, met-myoglobin, oxy hóa lipid và TVBN), tải lượng vi khuẩn (tổng số vi khuẩn, và số lượng tâm nhiệt), các thông số màu và các thuộc tính cảm quan trong suốt quá trình bảo quản lạnh (4 °C). Các hydrolysate (800 µg/g) đã giảm đáng kể (p ≤ 0.05) sự gia tăng giá trị pH và TVBN của thịt, ức chế 59–70% quá trình oxy hóa lipid so với đối chứng trong quá trình lưu trữ lạnh 30 ngày bằng cách loại bỏ 50% tải lượng vi khuẩn và đảm bảo lưu trữ an toàn trong 30 ngày. RKH và WKH đáng kể (p ≤ 0.05) tăng cường giá trị L*, a*, do đó gia tăng độ trắng và đỏ của thịt, trong khi BKH tăng giá trị b*, giảm tất cả các thông số màu trong quá trình bảo quản thịt. RKH và WKH (800 µg/g) (p ≤ 0.05) duy trì 50–71% và 69–75% màu sắc và mùi hương của thịt, tăng độ mọng nước của thịt sau 30 ngày bảo quản lạnh. BKH, RKH và WKH có thể được tích hợp an toàn vào thực phẩm mới.

Từ khóa

#Hydrolysate protein đậu thận #Alcalase #bảo quản thịt gà #hoạt tính chống oxy hóa #hoạt tính kháng khuẩn #chất lượng thịt

Tài liệu tham khảo

Fratamico, P.M., Bhunia, A.K., and Smith, J.L. (2005). Foodborne Pathogens: Microbiology and Molecular Biology, CRC Press LLC.

(2021, July 27). CDC, Available online: https://www.cdc.gov/foodsafety/foodborne-germs.html.

Anyasi, 2016, Effects of organic acid pretreatment on microstructure, functional and thermal properties of unripe banana flour, J. Food Meas. Charact., 11, 99, 10.1007/s11694-016-9376-2

Seabra, R.M., Andrade, P.B., Valentao, P., Fernandes, E., Carvalho, F., and Bastos, M. (2006). Anti-oxidant compounds extracted from several plant materials. Biomaterials from Aquatic and Terrestrial Organisms, CRC Press.

Shafi, 2020, Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review, Int. J. Biol. Macromol., 164, 2726, 10.1016/j.ijbiomac.2020.08.153

Abdelnour, 2020, The beneficial impacts of dietary phycocyanin supplementation on growing rabbits under high ambient temperature, Ital. J. Anim. Sci., 19, 1046, 10.1080/1828051X.2020.1815598

Ashour, E., El-Hack, M., Shafi, M., Alghamdi, W., Taha, A., Swelum, A., Tufarelli, V., Mulla, Z., El-Ghareeb, W., and El-Saadony, M. (2020). Impacts of Green Coffee Powder Supplementation on Growth Performance, Carcass Characteristics, Blood Indices, Meat Quality and Gut Microbial Load in Broilers. Agriculture, 10.

El-Saadony, M.T., Sitohy, M.Z., Ramadan, M.F., and Saad, A.M. (2021). Green nanotechnology for preserving and enriching yogurt with bio-logically available iron (II). Innov. Food Sci. Emerg. Technol., 69.

Osman, 2013, Preservative action of 11S (glycinin) and 7S (β-conglycinin) soy globulin on bovine raw milk stored either at 4 or 25 °C, J. Dairy Res., 80, 174, 10.1017/S0022029913000095

Sitohy, 2011, Enhancing Milk Preservation with Esterified Legume Proteins, Probiotics Antimicrob. Proteins, 3, 48, 10.1007/s12602-010-9060-5

Sitohy, 2011, Controlling psychrotrophic bacteria in raw buffalo milk preserved at 4oC with esterified legume proteins, LWT- Food Sci. Technol., 44, 1697, 10.1016/j.lwt.2011.03.008

Mahgoub, 2011, Inhibition of Growth of Pathogenic Bacteria in Raw Milk by Legume Protein Esters, J. Food Prot., 74, 1475, 10.4315/0362-028X.JFP-11-065

Mahgoub, 2011, Counteracting Recontamination of Pasteurized Milk by Methylated Soybean Protein, Food Bioprocess. Technol., 6, 101, 10.1007/s11947-011-0653-0

Osman, 2012, Extending the Technological Validity of Raw Buffalo Milk at Room Temperature by Esterified Legume Proteins, J. Food Process. Preserv., 38, 223, 10.1111/j.1745-4549.2012.00768.x

El-Saadony, M.T., Khalil, O.S.F., Osman, A., Alshilawi, M.S., Taha, A.E., Aboelenin, S.M., Shukry, M., and Saad, A.M. (2021). Bioactive peptides supplemented raw buffalo milk: Biological activity, shelf life and quality properties during cold preservation. Saudi, J. Biol. Sci.

Osman, 2018, Storage stability of minced beef supplemented with chickpea legumin at 4 C as a potential sub-stitute for nisin, LWT- Food Sci. Technol., 93, 434, 10.1016/j.lwt.2018.03.071

Osman, A., Abdel-Shafi, S., Al-Mohammadi, A.-R., Kamal, N., Enan, G., and Sitohy, M. (2020). Catfish glycoprotein, a highly powerful safe preservative of minced beef stored at 4 C for 15 Days. Foods, 9.

Swelum, 2021, Enhancing quality and safety of raw buffalo meat using the bioactive peptides of pea and red kidney bean under refrigeration conditions, Ital. J. Anim. Sci., 20, 762, 10.1080/1828051X.2021.1926346

Osman, 2020, Hepatoprotective action of papain-hydrolyzed buffalo milk protein on carbon tetrachloride oxidative stressed albino rats, J. Dairy Sci., 103, 1884, 10.3168/jds.2019-17355

Al-Mohammadi, A.-R., Osman, A., Enan, G., Abdel-Shafi, S., El-Nemer, M., Sitohy, M., and Taha, M. (2020). Powerful Antibacterial Peptides from Egg Albumin Hydrolysates. Antibiotics, 9.

Saad, 2020, Enzymatic hydrolysis of Phaseolus vulgaris protein isolate: Charac-terization of hydrolysates and effect on the quality of minced beef during cold storage, Int. J. Pept. Res. Ther., 26, 567, 10.1007/s10989-019-09863-x

Liu, 2017, Generation of bioactive peptides from duck meat during post-mortem aging, Food Chem., 237, 408, 10.1016/j.foodchem.2017.05.094

Lafarga, 2014, Bioactive peptides from meat muscle and by-products: Generation, functionality and application as functional ingredients, Meat Sci., 98, 227, 10.1016/j.meatsci.2014.05.036

Escudero, 2013, Identification of novel antioxidant peptides generated in Spanish dry-cured ham, Food Chem., 138, 1282, 10.1016/j.foodchem.2012.10.133

Stadnik, 2015, Meat and fermented meat products as a source of bioactive peptides, Acta Sci. Pol. Technol. Aliment., 14, 181, 10.17306/J.AFS.2015.3.19

Udenigwe, 2011, Chemometric Analysis of the Amino Acid Requirements of Antioxidant Food Protein Hydrolysates, Int. J. Mol. Sci., 12, 3148, 10.3390/ijms12053148

Faustino, A.M., Veiga, M., Sousa, P., Costa, E.M., Silva, S., and Pintado, M. (2019). Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules, 24.

Saad, 2021, The use of biological selenium nanoparticles in controlling Triticum aestivum L. crown root and rot diseases induced by Fusarium species and improve yield under drought and heat stress, Saudi J. Biol. Sci., 28, 4461, 10.1016/j.sjbs.2021.04.043

Desoky, 2021, Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil, J. Environ. Sci., 106, 1, 10.1016/j.jes.2021.01.012

Frias, 2015, Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans, Food Res. Int., 70, 55, 10.1016/j.foodres.2015.01.018

Romero, 1975, Heritable Variation in a Polypeptide Subunit of the Major Storage Protein of the Bean, Phaseolus vulgaris L., Plant. Physiol., 56, 776, 10.1104/pp.56.6.776

Los, F.G.B., Demiate, I.M., Dornelles, R.C.P., and Lamsal, B. (2020). Enzymatic hydrolysis of Carioca bean (Phaseolus vulgaris L.) protein as an alternative to commercially rejected grains. LWT, 125.

Mamboya, 2012, Papain, a plant enzyme of biological importance: A review, Am. J. Biochem. Biotechnol., 8, 99, 10.3844/ajbbsp.2012.99.104

Sarmadi, 2010, Antioxidative peptides from food proteins: A review, Peptides, 31, 1949, 10.1016/j.peptides.2010.06.020

Noman, 2018, Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme, Process. Biochem., 67, 19, 10.1016/j.procbio.2018.01.009

Bumrungsart, 2019, Optimization of Enzymatic Hydrolysis Condition for Producing Black Gram Bean (Vigna mungo) Hydrolysate with High Antioxidant Activity, Food Appl. Biosci. J., 7, 105

Meshginfar, N., Mahoonak, A.S., Ghorbani, M., and Aalami, M. (2016). Effects of Protein Hydrolysate from Sheep Visceral on Oxidative Stability of Soybean Oil and Chicken Sausage. J. Food Process. Preserv., 41.

El-Saadony, M.T., Elsadek, M.F., Mohamed, A.S., Taha, A.E., Ahmed, B.M., and Saad, A.M. (2020). Effects of chemical and natural additives on cucumber juice’s quality, shelf life, and safety. Foods, 9.

Saad, A.M., Mohamed, A.S., El-Saadony, M.T., and Sitohy, M.Z. (2021). Palatable functional Cucumber juices supplemented with polyphe-nols-rich herbal extracts. LWT- Food Sci. Technol., 148.

Johnson, 1983, Functional Properties of Acylated Pea Protein Isolates, J. Food Sci., 48, 722, 10.1111/j.1365-2621.1983.tb14883.x

Holye, 1994, Quality of fish protein hydrolysates from herring (Clupea harengus), J. Food Sci., 59, 76, 10.1111/j.1365-2621.1994.tb06901.x

Laemmli, 1970, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, 227, 680, 10.1038/227680a0

Roy, 2019, Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates, J. Food Meas. Charact., 14, 303, 10.1007/s11694-019-00292-4

Chobert, 1991, In vitro proteolysis and functional properties of reductively alkylated β-casein derivatives, J. Dairy Res., 58, 285, 10.1017/S0022029900029861

AOAC (2005). Official Methods of Analysis, Pub AOAC International Maryland. [18th ed.].

Wani, 2012, Physicochemical and functional properties of flours from three Black gram (Phaseolus mungo L.) cultivars, Int. J. Food Sci. Technol., 48, 771, 10.1111/ijfs.12025

Wani, 2015, Physico-chemical and functional properties of native and hydrolysed protein isolates from Indian black gram (Phaseolus mungo L.) cultivars, LWT, 60, 848, 10.1016/j.lwt.2014.10.060

Kotnik, 2005, Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities, Food Chem., 89, 191, 10.1016/j.foodchem.2004.02.025

Ordonez, 2006, Antioxidant activities of Sechium edule (Jacq.) Swartz extracts, Food Chem., 97, 452, 10.1016/j.foodchem.2005.05.024

Giusti, M., and Wrolstad, R.E. (2001). Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem.

Hatano, 1988, Two new flavonoids and other constituents in licorice root. Their relative astringency and radical scavenging effects, Chem. Pharm. Bull., 36, 2090, 10.1248/cpb.36.2090

Dastmalchi, 2007, Chemical composition and antioxidative activity of Moldavian balm (Dra-cocephalum moldavica L.) extracts, LWT- Food Sci. Technol., 40, 1655, 10.1016/j.lwt.2006.11.013

Alkhatib, 2021, Impact of mycogenic zinc nanoparticles on performance, behavior, immune response, and microbial load in Oreochromis niloticus, Saudi J. Biol. Sci., 28, 4592, 10.1016/j.sjbs.2021.04.066

Mahgoub, 2019, Biosynthesis, Optimization and Characterization of Silver Nanoparticles Using a Soil Isolate of Bacillus pseudomycoides MT32 and their Antifungal Activity Against some Pathogenic Fungi, Adv. Anim. Vet. Sci., 7, 238

Alizadeh, 2014, Synergistic antifungal effects of quince leaf’s extracts and silver nanoparticles on Aspergillus niger, J. Appl. Biol. Sci., 8, 10

Kuley, 2011, Effect of the Icing with Rosemary Extract on the Oxidative Stability and Biogenic Amine Formation in Sardine (Sardinella aurita) During Chilled Storage, Food Bioprocess. Technol., 5, 2777

Badr, 2007, Antioxidative activity of carnosine in gamma irradiated ground beef and beef patties, Food Chem., 104, 665, 10.1016/j.foodchem.2006.12.015

Krzywicki, 1982, The determination of haem pigments in meat, Meat Sci., 7, 29, 10.1016/0309-1740(82)90095-X

Samuelsson, 1968, Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation, Eur. J. Biochem., 6, 126, 10.1111/j.1432-1033.1968.tb00428.x

Idakwo, 2016, Total volatile base nitrogen (TVBN) and trimethylamine (TMA) content of “Bunyi youri” as influenced by the addition of glucose and clove during storage, Int. J. Biotechnol. Food Sci., 4, 81

Piga, 2005, Texture evolution of “Amaretti” cookies during storage, Eur. Food Res. Technol., 221, 387, 10.1007/s00217-005-1185-5

Hunter, R. (1975). Scales for the Measurements of Color Difference. The Measurement of Appearance, John Willy & Sons.

Saad, 2021, Impact of cucumber pomace fortification on the nutri-tional, sensorial and technological quality of soft wheat flour-based noodles, Int. J. Food Sci. Technol., 56, 3255, 10.1111/ijfs.14970

Abdelnour, S., El-Saadony, M., Saghir, S., El-Hack, M.A., Al-Shargi, O., Al-Gabri, N., and Salama, A. (2020). Mitigating negative impacts of heat stress in growing rabbits via dietary prodigiosin supplementation. Livest. Sci., 240.

Reda, F.M., El-Saadony, M.T., ElNesr, S.S., Alagawany, M., and Tufarelli, V. (2020). Effect of Dietary Supplementation of Biological Curcumin Nanoparticles on Growth and Carcass Traits, Antioxidant Status, Immunity and Caecal Microbiota of Japanese Quails. Animals, 10.

Reda, 2021, Use of biological nano zinc as a feed additive in quail nutrition: Biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota, Ital. J. Anim. Sci., 20, 324, 10.1080/1828051X.2021.1886001

Sheiha, A.M., Abdelnour, S.A., El-Hack, A., Mohamed, E., Khafaga, A.F., Metwally, K.A., Ajarem, J.S., Maodaa, S.N., Allam, A.A., and El-Saadony, M.T. (2020). Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits ex-posed to thermal stress. Animals, 10.

Evangelho, 2016, Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates, Food Sci. Technol., 36, 23, 10.1590/1678-457x.0047

Pedroche, 2010, Improvement of functional prop-erties of chickpea proteins by hydrolysis with immobilised Alcalase, Food Chem., 122, 1212, 10.1016/j.foodchem.2010.03.121

Evangelho, 2017, Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties, Food Chem., 214, 460, 10.1016/j.foodchem.2016.07.046

Rocha, 2013, Interaction and digestibility of phaseolin/polyphenol in the common bean, Food Chem., 138, 776, 10.1016/j.foodchem.2012.11.079

Otte, 2017, Angiotensin I-converting enzyme inhibitory activity and antioxi-dant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins, Int. Dairy J., 66, 91, 10.1016/j.idairyj.2016.11.006

Moure, 2006, Functionality of oilseed protein products: A review, Food Res. Int., 39, 945, 10.1016/j.foodres.2006.07.002

Osman, 2016, Soybean glycinin basic subunit inhibits methicillin re-sistant-vancomycin intermediate Staphylococcus aureus (MRSA-VISA) in vitro, Int. J. Appl. Res. Nat. Prod., 9, 17

Wahdan, 2018, Antibacterial and Antioxidant Activities of an Enzymatic Hydrolysate Kidney Bean (Phaseolus vulgaris L.) Protein Isolates, J. Agric. Chem. Biotechnol., 9, 85

Eckert, 2019, Effects of enzymatic hydrolysis and ultrafiltration on physico-chemical and functional properties of faba bean protein, Cereal Chem., 96, 725, 10.1002/cche.10169

Sarker, A., Chakraborty, S., and Roy, M. (2020). Dark red kidney bean (Phaseolus vulgaris L.) protein hydrolysates inhibit the growth of oxidizing substances in plain yogurt. J. Agric. Food Res., 2.

Jakobek, 2015, Interactions of polyphenols with carbohydrates, lipids and proteins, Food Chem., 175, 556, 10.1016/j.foodchem.2014.12.013

Torre, 2008, Release of ferulic acid from corn cobs by alkaline hydrolysis, Biochem. Eng. J., 40, 500, 10.1016/j.bej.2008.02.005

Vijitpunyaruk, 2013, Preparation of alcalase hydrolysed rice bran protein concentrate and its inhibitory effect on soybean lipoxygenase activity, Int. J. Food Sci. Technol., 49, 501, 10.1111/ijfs.12329

Esfandi, R., Walters, M.E., and Tsopmo, A. (2019). Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon, 5.

Nwachukwu, I.D., and Aluko, R.E. (2019). Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem., 43.

Breijyeh, Z., Jubeh, B., and Karaman, R. (2020). Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 25.

Benkerroum, 2010, Antimicrobial peptides generated from milk proteins: A survey and prospects for application in the food industry. A review, Int. J. Dairy Technol., 63, 320, 10.1111/j.1471-0307.2010.00584.x

Lei, 2019, The antimicrobial peptides and their potential clinical applications, Am. J. Transl. Res., 11, 3919

Karabagias, 2011, Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging, Meat Sci., 88, 109, 10.1016/j.meatsci.2010.12.010

Chaijan, 2008, Lipid and myoglobin oxidations in muscle foods, Songklanakarin J. Sci. Technol., 30, 47

Citta, 2017, Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life, Food Sci. Nutr., 5, 1079, 10.1002/fsn3.493

Vilcacundo, 2019, Extraction of protein concentrate from red bean (Phaseolus vulgaris L.): Antioxidant activity and inhibition of lipid peroxidation, J. Appl. Pharm. Sci., 9, 1

Aslam, 2020, Effect of Dietary Supplementation of Bioactive Peptides on Antioxidant Potential of Broiler Breast Meat and Physicochemical Characteristics of Nuggets, Food Sci. Anim. Resour., 40, 55, 10.5851/kosfa.2019.e82

Ab Aziz, M.F., Hayat, M.N., Kaka, U., Kamarulzaman, N.H., and Sazili, A.Q. (2020). Physico-Chemical Characteristics and Microbiological Quality of Broiler Chicken Pectoralis Major Muscle Subjected to Different Storage Temperature and Duration. Foods, 9.

Manigiri, 2019, Shelf Life Evaluation of Chicken Meat Nuggets Incorporated with Gooseberry (Pulp and Seed Coat) Powder as Natural Preservatives at Refrigerated Storage (4 ± 1°C), Int. J. Livest. Res., 9, 53

Egyptian Standard, S.E. (2004). Fresh Meat.