Biochars từ các nguồn gốc nông công nghiệp của Amazon: một giải pháp sinh thái để nâng cao việc sử dụng phốt pho trong nông nghiệp

Springer Science and Business Media LLC - Tập 25 - Trang 1119-1132 - 2022
Kleve Freddy Ferreira Canteral1, Yan Nunes Dias2, Antonio Rodrigues Fernandes2
1Department of Engineering and Exact Sciences, São Paulo State University–FCAV/UNESP, Jaboticabal, São Paulo, Brazil
2Vale Institute of Technology, Sustainable Development, Belém, Brazil

Tóm tắt

Tăng trưởng dân số thế giới yêu cầu sản xuất nông nghiệp cao hơn, từ đó làm tăng nhu cầu về hợp chất dựa trên phốt pho (P) và gia tăng việc phát sinh chất thải nông nghiệp công nghiệp. Biochar là một lựa chọn hiệu quả để phục hồi và tái sử dụng các loài dựa trên phốt pho, cũng như để giảm thiểu phát sinh các trách nhiệm môi trường và cung cấp phương án xử lý thích hợp cho các chất thải nông nghiệp công nghiệp. Nghiên cứu này điều tra khả năng hấp phụ phosphate của biochar được sản xuất từ các chất thải của hạt açaí (BA), vỏ quả hạt Brazil (BN), và bánh nhân cùi dừa (BK) và mối quan hệ với thành phần hóa học của chúng. Biochar được sản xuất ở 700 ºC để đánh giá các thuộc tính lý hóa, thành phần nguyên tố, thời gian tiếp xúc và ảnh hưởng của pH lên khả năng hấp phụ phosphate. Thời gian tiếp xúc rắn/lỏng dao động từ 1 đến 24 giờ và quá trình hấp phụ các loài phốt pho trên biochar phụ thuộc mạnh vào pH (p < 0.05) giữa các mẫu biochar (BN > BA > BK). Mô hình isotherm Langmuir mô tả tốt nhất quá trình hấp phụ (R2 ≥ 0.90) và cho thấy hiệu quả cao trong việc loại bỏ phosphate trong dung dịch nước (BA: 92.34; BN: 123.55 và BK: 79.46 mg g–1). Tính dị đa của các thành phần khoáng đã được nhấn mạnh qua phân tích thành phần chính và chỉ ra rằng khả năng hấp phụ phosphate trên biochar có sự liên hệ trực tiếp rất cao với hàm lượng carbon (C), khả năng trao đổi cation và pH cũng như có mối tương quan nghịch với hàm lượng nitơ (N), năng suất, điểm không tải, (O + N)/C và hàm lượng tro. Do đó, những loại biochar này là những vật liệu đầy hứa hẹn cho khả năng hấp phụ phosphate và có tiềm năng được áp dụng cho đất như một nguồn cung cấp P dưới dạng phân bón sinh học.

Từ khóa

#biochar #phốt pho #chất thải nông nghiệp #hấp phụ #phân bón sinh học

Tài liệu tham khảo

Abdeljaoued E, Brulé M, Tayibi S, Manolakos D, Oukarroum A, Monlau F, Barakat A (2020) Bibliometric analysis of the evolution of biochar research trends and scientific production. Clean Techn Environ Policy 22:1967–1997. https://doi.org/10.1007/s10098-020-01969-x ABRAPALMA - Brazilian Palm Oil Producers Association, (2017) Available In: 〈http://www.abrapalma.org/pt/〉. Accessed March 16, 2021 Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman ARA (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131:374–379. https://doi.org/10.1016/j.biortech.2012.12.165 Amin FR, Huang Y, He Y, Zhang R, Liu G, Chen C (2016) Biochar applications and modern techniques for characterization. Clean Technol Environ Policy 18:1457–1473. https://doi.org/10.1007/s10098-016-1218-8 Antunes E, Jacob MV, Brodie G, Schneider PA (2018) Isotherms, kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis. J Environ Chem Eng 6:395–403. https://doi.org/10.1016/j.jece.2017.12.011 Embrapa. Empresa Brasileira de Pesquisa Agropecuária (2020) Available In: 〈http://www.embrapa.br〉. Accessed on June 4, 2022. (In Portuguese) Bai J, Ye X, Jia J, Zhang G, Zhao Q, Cui B, Liu X (2017) Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere 188:677–688. https://doi.org/10.1016/j.chemosphere.2017.08.117 Benhiti R, Ait Ichou A, Zaghloul A, Carja G, Zerbet M, Sinan F, Chiban M (2021) Kinetic, isotherm, thermodynamic and mechanism investigations of dihydrogen phosphate removal by MgAl-LDH. Nanotechnol Environ Eng 6:1–12. https://doi.org/10.1007/s41204-021-00110-7 Bian Y, Bian Z, Zhang J, Ding A, Liu S, Zheng L, Wang H (2015) Adsorption of cadmium ions from aqueous solutions by activated carbon with oxygen-containing functional groups. Chinese J Chem Eng 23:1705–1711. https://doi.org/10.1016/j.cjche.2015.08.031 Braga JM, Defelipo BV (1974) Spectrophotometric determination of phosphorus in soil and plant extracts. Rev Ceres 21:73–85 Buratto RT, Cocero MJ, Martín Á (2021) Characterization of industrial açaí pulp residues and valorization by microwave-assisted extraction. Chem Eng Process - Process Intensif 160:108269. https://doi.org/10.1016/j.cep.2020.108269 Chiban M, Soudani A, Sinan F, Persin M (2011) Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant. Colloids Surf B Biointerfaces 82:267–276. https://doi.org/10.1016/j.colsurfb.2010.09.013 Chowdhury ZZ, Ziaul Karim M, Ashraf MA, Khalid K (2016) Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust. BioResources. https://doi.org/10.15376/biores.11.2.3356-3372 Cordell D, Drangert JO, White S (2009) The story of phosphorus: Global food security and food for thought. Glob Environ Chang 19:292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009 Dias YN, De Souza ES, Da Costa HSC, Melo LCA, Penido ES, Do Amarante CB, Teixeira OMM, Fernandes AR (2019) Biochar produced from Amazonian agro-industrial wastes: properties and adsorbent potential of Cd2+ and Cu2+. Biochar 1:389–400. https://doi.org/10.1007/s42773-019-00031-4 Dias YN, Pereira WVS, Da Costa MV, De Souza ES, Ramos SJ, Do Amarante CB, Campos WEO, Fernandes AR (2022) Biochar mitigates bioavailability and environmental risks of arsenic in gold mining tailings from the eastern Amazon. J Environ Manage 311:114840. https://doi.org/10.1016/j.jenvman.2022.114840 Domingues RR, Trugilho PF, Silva CA, Melo ICND, Melo LC, Magriotis ZM, Sanchez-Monedero MA (2017) Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS One 12:1–19. https://doi.org/10.1371/journal.pone.0176884 Embrapa. Empresa Brasileira de Pesquisa Agropecuária (2013) Production of germinated oil palm seeds (Elaeis guineensis Jacq.) in Embrapa - Oil Palm - BRS C2001. Available In: 〈http://www.embrapa.br〉. Accessed on June 2, 2022. (In Portuguese) Freundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57:385–470. https://doi.org/10.1515/zpch-1907-5723 Haddad K, Jellali S, Jeguirim M, Trabelsi ABH, Limousy L (2018) Investigations on phosphorus recovery from aqueous solutions by biochars derived from magnesium-pretreated cypress sawdust. J Environ Manage 216:305–314. https://doi.org/10.1016/j.jenvman.2017.06.020 Homma AKO, de Menezes AJEA, Maués MM (2021) Castanheira-do-pará: os desafios do extrativismo para plantios agrícolas. Bol do Mus Para Emílio Goeldi-Ciências Nat 9:293–306. https://doi.org/10.46357/bcnaturais.v9i2.526 IBGE. Instituto Brasileiro de Geografia e Estatística - Production of Plant Extraction and Silviculture, (2015) Available In: 〈http://www.ibge.gov.br〉. Accessed on October 9, 2019. (In Portuguese) IPCC, 2014 IPCC – Intergovernmental Panel on Climate Change. Climate Change 2013: Mitigation. Contribution of Working Group III. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, United Kingdom and New York, 2014 Jalali M, HematiMatin N (2015) Sorption of phosphorus in calcareous paddy soils of Iran: effects of soil/solution ratio and pH. Environ Earth Sci 73:2047–2059. https://doi.org/10.1007/s12665-014-3555-4 Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis. Prentice Hall, New Jersey, p 773 Jung KW, Jeong TU, Hwang MJ, Kim K, Ahn KH (2015) Phosphate adsorption ability of biochar/Mg-Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl2 as electrolyte. Bioresour Technol 198:603–610. https://doi.org/10.1016/j.biortech.2015.09.068 Jung KW, Jeong TU, Kang HJ, Chang JS, Ahn KH (2016) Preparation of modified-biochar from Laminaria japonica: simultaneous optimization of aluminum electrode-based electro-modification and pyrolysis processes and its application for phosphate removal. Bioresour Technol 214:548–557. https://doi.org/10.1016/j.biortech.2016.05.005 Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis, Psychometrika. Urbana 23:187–200 Kwon G, Bhatnagar A, Wang H, Kwon EE, Song H (2020) A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. J Hazard Mater 400:123242. https://doi.org/10.1016/j.jhazmat.2020.123242 Langmuir I (1919) Diminishing approximately 1% for. J Am Chem Soc 40:1361–1403 Lehmann J, Joseph S (2015) Biochar for environmental management: an introduction. Sci Technol 1:1–12 Li H, Dong X, da Silva EB, De Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072 Liu J, Zhou Q, Chen J, Zhang L, Chang N (2013) Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber. Chem Eng J 215–216:859–867. https://doi.org/10.1016/j.cej.2012.11.067 Maroušek J, Gavurová B (2022) Recovering phosphorous from biogas fermentation residues indicates promising economic results. Chemosphere 291. https://doi.org/10.1016/j.chemosphere.2021.133008 Maroušek J, Trakal L (2022) Techno-economic analysis reveals the untapped potential of wood biochar. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.133000 Maroušek J, Vochozka M, Plachý J, Žák J (2017) Glory and misery of biochar. Clean Technol Environ Policy 19:311–317. https://doi.org/10.1007/s10098-016-1284-y Melo LCA, Coscione AR, Abreu CA, Puga AP, Camargo OA (2013) Influence of pyrolysis temperature on cadmium and zinc sorption capacity of sugar cane straw–derived biochar. BioResources. https://doi.org/10.15376/biores.8.4.4992-5004 Nachenius RW, Ronsse F, Venderbosch RH, Prins W (2013) Biomass Pyrolysis, 1st edn. Elsevier Inc. Novais SV, Zenero MDO, Barreto MSC, Montes CR, Cerri CEP (2018) Phosphorus removal from eutrophic water using modified biochar. Sci Total Environ 633:825–835. https://doi.org/10.1016/j.scitotenv.2018.03.246 Pinto MCE, Da Silva DD, Gomes ALA, Dos Santos MM, De Couto RAA, De Novais RF, Constantino VRL, Tronto J, Pinto FG (2019) Biochar from carrot residues chemically modified with magnesium for removing phosphorus from aqueous solution. J Clean Prod 222:36–46. https://doi.org/10.1016/j.jclepro.2019.03.012 Qian TT, Jiang H (2014) Migration of phosphorus in sewage sludge during different thermal treatment processes. ACS Sustain Chem Eng 2:1411–1419. https://doi.org/10.1021/sc400476j Qiu B, Duan F (2019) Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism. Colloids Surf A Physicochem Eng Asp 571:86–93. https://doi.org/10.1016/j.colsurfa.2019.03.041 R Development Core Team (2020) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria Reitzel K, Bennett WW, Berger N, Brownlie WJ, Bruun S, Christensen ML, Metson GS (2019) New training to meet the global phosphorus challenge. Environ Sci Technol 53:8479–8481. https://doi.org/10.1021/acs.est.9b03519 Sato MK, de Lima HV, Costa AN, Rodrigues S, Pedroso AJ, De Freitas Maia CMB (2019) Biochar from Acai agroindustry waste: study of pyrolysis conditions. Waste Manag 96:158–167. https://doi.org/10.1016/j.wasman.2019.07.022 Singh B, Camps-Arbestain M, Lehmann J, CSIRO (Australia) (2017) Biochar: a guide to analytical methods. CSIRO Publishing, Clayton U.S.E.P. (2017) Agency Guide for industrial waste management from the United States environmental protection agency Protecting Land Ground Water Surface Water Air, US EPA, United states, p 1 Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 82:1431–1437. https://doi.org/10.1016/j.chemosphere.2010.11.050 Wang H, Fang C, Wang Q, et al (2017) Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Adv 8:16260–16268. https://doi.org/10.1039/c8ra01454j Wang Y, Liu R (2017) Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution. Fuel Process Technol 160:55–63. https://doi.org/10.1016/j.fuproc.2017.02.019 Wang Z, Shen D, Shen F, Li T (2016) Phosphate adsorption on lanthanum loaded biochar. Chemosphere 150:1–7. https://doi.org/10.1016/j.chemosphere.2016.02.004 Wang S, Kong L, Long J, Su M, Diao Z, Chang X, Shih K (2018) Adsorption of phosphorus by calcium-flour biochar: Isotherm, kinetic and transformation studies. Chemosphere 195:666–672. https://doi.org/10.1016/j.chemosphere.2017.12.101 Wiedemeier DB, Abiven S, Hockaday WC, Keiluweit M, Kleber M, Masiello CA, Schmidt MW (2015) Aromaticity and degree of aromatic condensation of char. Org Geochem 78:135–143. https://doi.org/10.1016/j.orggeochem.2014.10.002 Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018 Zhao S, Wang B, Gao Q, Gao Y, Liu S (2017) Adsorption of phosphorus by different biochars. Spectrosc Lett 50:73–80. https://doi.org/10.1080/00387010.2017.1287091 Zhou Y, Liu X, Xiang Y, Wang P, Zhang J, Zhang F, Tang L (2017) Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresour Technol 245:266–273. https://doi.org/10.1016/j.biortech.2017.08.178 Zhu N, Yan T, Qiao J, Cao H (2016) Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: adsorption mechanism and depleted adsorbent utilization. Chemosphere 164:32–40. https://doi.org/10.1016/j.chemosphere.2016.08.036