Biochar to improve soil fertility. A review

Agronomy for Sustainable Development - Tập 36 Số 2 - 2016
Yang Ding1, Yunguo Liu1, Shaobo Liu2, Zhongwu Li1, Xiaofei Tan1, Hua Yin1, Guangming Zeng3, Lu Zhou1, Bohong Zheng2
1College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People’s Republic of China
2School of Architecture and Art Central South University, Central South University, Changsha, 410082, People’s Republic of China
3Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aciego Pietry JC, Brookes PC (2008) Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol Biochem 40:1856–1861. doi: 10.1016/j.soilbio.2008.03.020

Amezketa E (1999) Soil aggregate stability: a review. J Sustain Agric 14:83–151. doi: 10.1300/J064v14n02-08

Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320. doi: 10.1016/j.pedobi.2011.07.005

Annabi M, Le Bissonnais Y, Le Villio-Poitrenaud M, Houot S (2011) Improvement of soil aggregate stability by reported applications of organic amendments to a cultivated silty loam soil. Agric Ecosyst Environ 144:382–389. doi: 10.1016/j.agee.2011.07.005

Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos, 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res 111:81–84. doi: 10.1016/j.fcr.2008.10.008

Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar applicaton to temperate soils: a review. Plant Soil 337:1–18. doi: 10.1007/s11104-010-0464-5

Azargohar R, Dalai AK (2008) Steam and KOH activation of biochar: experimental and modeling studies. Microporous Mesoporous Mater 110:413–421. doi: 10.1016/j.micromeso.2007.06.047

Baiamonte G, De Pasquale C, Marsala V, Cimò G, Alonzo G, Crescimanno G, Conte P (2015) Structure alteration of a sandy-clay soil by biochar amendments. J Soils Sediments 15:816–824. doi: 10.1007/s11368-014-0960-y

Bailey VL, Fansler SJ, Smith JL, Bolton JRH (2010) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43:296–301. doi: 10.1016/j.soilbio.2010.10.014

Ball PN, MacKenzie MD, DeLuca TH, Holben WE (2010) Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacteria abundance in dry montane forest soils. J Environ Qual 39:1243–1253. doi: 10.2134/jeq2009.0082

Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford

Baronti S, Vaccari F, Miglietta F, Calzolari C, Lugato E, Orlandin S, Pini R, Zulian C, Genesio L (2014) Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur J Agron 53:38–44. doi: 10.1016/j.eja.2013.11.003

Bruun EW, Hauggaard-Nielsen H, Ibrahim N, Egsgaard H, Ambus P, Jensen PA, Dam-Johansen K (2011) Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenerg 35:1182–1189. doi: 10.1016/j.biombioe.2010.12.008

Bruun EW, Ambus P, Egsgaard H, Haugaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79. doi: 10.1016/j.soilbio.2011.11.019

Butnan S, Deenik JL, Toomsan B, Antal MJ, Vityakon P (2015) Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237:105–116. doi: 10.1016/j.geoderma.2014.08.010

Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. doi: 10.1016/j.biortech.2011.11.084

Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Report 3:17–32. doi: 10.1038/srep01732

Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008a) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45:629–634. doi: 10.1071/SR07109

Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008b) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444. doi: 10.1071/SR08036

Chen H, Yao J, Wang F, Choi MMF, Bramanti E, Zaray G (2009) Study on the toxic effects of diphenol compounds on soil microbial activity by a combination of methods. J Hazard Mater 167:846–851. doi: 10.1016/j.jhazmat.2009.01.066

Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488. doi: 10.1016/j.orggeochem.2006.06.022

Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface change along a climosequence. Geochim Cosmochim Acta 72:1598–1610. doi: 10.1016/j.gca.2008.01.010

Cheng Y, Cai Z, Chang SX, Wang J, Zhang J (2012) Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biol Fertil Soils 48:941–946. doi: 10.1007/s00374-012-0687-0

Clough TJ, Bertram JE, Ray JL, Condron LM, O’Callaghan M, Sherlock RR, Wells NS (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci Soc Am J 74:852–860. doi: 10.2136/sssaj2009.0185

Compant S, Clément S, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi: 10.1016/j.soilbio.2009.11.024

Conte P, Marsala V, De Pasquale C, Bubici S, Valagussa M, Pozzi A, Alonzo G (2013) Nature of water-biochar interface interactions. GCB Bioenergy 5:116–121. doi: 10.1111/gcbb.12009

Dai Z, Meng J, Muhammad N, Liu X, Wang H, He Y, Brookes PC, Xu J (2013) The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks. J Soils Sediments 13:989–1000. doi: 10.1007/s11368-013-0698-y

De Meyer A, Poesen J, Isabirye M, Deckers J, Rates D (2011) Soil erosion rate in tropical villages: a case study from Lake Victoria Basin, Uganda. Catena 84:89–98. doi: 10.1016/j.catena.2010.10.001

Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270. doi: 10.2136/sssaj2009.0115

DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448–453. doi: 10.2136/sssaj2005.0096

DeLuca TH, MacKenzie MD, Gundale MJ (2009) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 251–270

Domene X, Mattana S, Hanley K, Enders A, Lehmann J (2014) Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biol Biochem 72:152–162. doi: 10.1016/j.soilbio.2014.01.035

Domene X, Hanley K, Enders A, Lehmann J (2015) Short-term mesofauna responses to soil additions of corn stover biochar and the role of microbial biomass. Appl Soil Ecol 89:10–17. doi: 10.1016/j.apsoil.2014.12.005

Ennis CJ, Evans AG, Islam M, Ralebitso-Senior K, Senior E (2012) Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Crit Rev Environ Sci Technol 42:2311–2364. doi: 10.1080/10643389.2011.574115

Ezawa T, Yamamoto K, Yoshida S (2002) Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Sci Plant Nutr 48:897–900. doi: 10.1080/00380768.2002.10408718

Gell K, Van Groenigen J, Cayuela ML (2011) Residues of bioenergy production chains as soil 17 amendments: immediate and temporal phytotoxicity. J Hazard Mater 186:2017–2025. doi: 10.1016/j.jhazmat.2010.12.105

Genesio L, Miglietta F, Baronti S, Vaccari FP (2015) Biochar increases vineyard productivity without affecting grape quality: results from a four years field experiment in Tuscany. Agric Ecosyst Environ 201:20–25. doi: 10.1016/j.agee.2014.11.021

George N, Davies JT (1988) Parameters affecting adsorption of microorganisms on activated charcoal cloth. J Chem Technol Biotechnol 43:173–186. doi: 10.1002/jctb.280430303

Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:1719–1730. doi: 10.1007/s00374-002-0466-4

Grossman JM, O’Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60:192–205. doi: 10.1007/s00248-010-9689-3

Hale SE, Alling V, Martinsen V, Mulder J, Breedveld GD, Cornelissen G (2013) The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91:1612–1619. doi: 10.1016/j.chemosphere.2012.12.057

Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralization. Org Geochem 35:823–830. doi: 10.1016/j.orggeochem.2004.03.003

Jeffery S, Verheijen FGA, Van Der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187. doi: 10.1016/j.agee.2011.08.015

Jiang C, Yu G, Li Y, Cao G, Yang ZP, Sheng W, Yu W (2012) Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment. Ecol Eng 44:1–9. doi: 10.1016/j.ecoleng.2012.04.006

Jianping Z (1999) Soil erosion in Guizhou province of China: a case study in Bijie prefecture. Soil Use Manag 15:68–70. doi: 10.1111/j.1475-2743.1999.tb00067.x

Jien SH, Wang CS (2013) Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 110:225–233. doi: 10.1016/j.catena.2013.06.021

Jin H (2010) Characterization of microbial life colonizing biochar and biocharamended soils. PhD Dissertation, Cornell University, Ithaca, NY

Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124. doi: 10.1016/j.soilbio.2011.10.012

Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh BP (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48:501–515. doi: 10.1071/SR10009

Kammann CI, Schmidt HP, Messerschmidt N, Linsel S, Steffens D, Müller C, Koyro HW, Conte P, Joseph S (2015) Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci Report 5:11080. doi: 10.1038/srep11080

Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol 44:6189–6195. doi: 10.1021/es1014423

Kim JS, Sparovek S, Longo RM, De Melo WJ, Crowley D (2007) Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol Biochem 39:648–690. doi: 10.1016/j.soilbio.2006.08.010

Koutcheiko S, Monreal CM, Kodama H, McCracken T, Kotlyar L (2007) Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresour Technol 98:2459–2464. doi: 10.1016/j.biortech.2006.09.038

Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219. doi: 10.1016/j.soilbio.2008.10.016

Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449. doi: 10.1016/j.geoderma.2010.05.013

Lang T, Jensen AD, Jensen PA (2005) Retention of organic elements during solid fuel pyrolysis with emphasis on the peculiar behavior of nitrogen. Energy Fuel 19:1631–1643. doi: 10.1021/ef049739a

Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol 148:196–201. doi: 10.1016/j.biortech.2013.08.135

Lehmann J, Joseph S (2009) Biochar for environmental management science and technology. Earthscan, London

Lehmann J, Sohi S (2008) Comment on “Fire-derived charcoal causes loss of forest humus”. Science 321:1295. doi: 10.1126/science.1160005

Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Chang 11:403–427. doi: 10.1007/s11027-005-9006-5

Lehmann J, Czimczik C, Laird C, Sohi S (2009) Stability of biochar in soil. In: Lehmann J, Josep S (eds) Biochar for environmental management: science and technology. Earthscan, London

Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. doi: 10.1016/j.soilbio.2011.04.022

Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soil. Soil Sci Soc Am J 70:1719–1730. doi: 10.2136/sssaj2005.0383

Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizão FJ (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213. doi: 10.1016/j.orggeochem.2009.09.007

Liesch AM, Weyers SL, Gaskin JW, Das KC (2010) Impact of two different biochars on earthworm growth and survival. Ann Environ Sci 4:1–9

Lin Y, Munroe P, Joseph S, Henderson R, Ziolkowski A (2012) Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87:151–157. doi: 10.1016/j.chemosphere.2011.12.007

Liu X, Qu J, Li L, Zhang A, Jufeng Z, Zheng J, Pan G (2012) Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies? A cross site field experiment from South China. Ecol Eng 42:168–173. doi: 10.1016/j.ecoleng.2012.01.016

Liu Z, Chen X, Jing Y, Li Q, Zhang J, Huang Q (2014) Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 123:45–51. doi: 10.1016/j.catena.2014.07.005

Lu SG, Sun FF, Zong YT (2014) Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena 114:37–44. doi: 10.1016/j.catena.2013.10.014

Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128. doi: 10.1007/s11104-010-0327-0

Masto RE, Ansari MA, George J, Selvi V, Ram L (2013) Co-application of biochar and lignite fly ash on soil nutrients and biological parameters at different crop growth stages of Zea mays. Ecol Eng 58:314–322. doi: 10.1016/j.ecoleng.2013.07.011

Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht

Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T (2004) Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol 95:255–257. doi: 10.1016/j.biortech.2004.02.015

Morales M, Comerford N, Guerrini I, Falcão N, Reeves J (2013) Sorption and desorption of phosphate on biochar and biochar–soil mixtures. Soil Use Manag 29:306–314. doi: 10.1111/sum.12047

Mukherjee A, Zimmerman AR (2013) Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 193:122–130. doi: 10.1016/j.geoderma.2012.10.002

Nelissen V, Saha BK, Ruysschaert G, Boeckx P (2014) Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol Biochem 70:244–255. doi: 10.1016/j.soilbio.2013.12.026

Nelissen V, Ruysschaert G, Manka’Abusi D, D’Hose T, De Beuf K, Al-Barri B, Cornelis W, Boeckx P (2015) Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. Eur J Agron 62:65–78. doi: 10.1016/j.eja.2014.09.006

Noguera D, Rondón M, Laossi KR, Hoyos V, Lavelle P, de Carvalho MHC, Barot S (2010) Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol Biochem 42:1017–1027. doi: 10.1016/j.soilbio.2010.03.001

Novak JM, Busscher WJ (2013) Selection and use of designer biochars to improve characteristics of southeastern USA Coastal Plain degraded soils. Advanced biofuels and bioproducts. Springer, New York, pp 69–96

O’Neill B, Grossman J, Tsai MT, Gomes JE, Lehmann J, Peterson J, Neves E, Thies JE (2009) Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58:23–35. doi: 10.1007/s00248-009-9515-y

Oguntunde P, Fosu M, Ajayi A, Giesen N (2004) Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fertil Soils 39:295–299. doi: 10.1007/s00374-003-0707-1

Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis: chemical and microbiological properties, 2nd edn. American Society of Agronomy Inc, Madison

Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451. doi: 10.1007/s11104-011-0948-y

Paz-Ferreiro J, Gascó G, Gutiérrez B, Méndez A (2012) Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol Fertil Soils 48:511–517. doi: 10.1007/s00374-011-0644-3

Peake LR, Reid BJ, Tang X (2014) Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 235:182–190. doi: 10.1016/j.geoderma.2014.07.002

Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242. doi: 10.1034/j.1600-0706.2000.890203.x

Pollock MR (1947) The growth of H. pertussis on media without blood. Br J Exp Pathol 28:295–307

Prayogo C, Jones JE, Baeyens J, Bending GD (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702. doi: 10.1007/s00374-013-0884-5

Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284. doi: 10.1007/s00374-011-0624-7

Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53. doi: 10.1111/j.1469-8137.2006.01750.x

Rillig MC, Wagner M, Salem M, Antunes PM, George C, Ramke HG, Titirici MM, Antonietti M (2010) Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl Soil Ecol 45:238–242. doi: 10.1016/j.apsoil.2010.04.011

Rogovska N, Laird DA, Rathke SJ, Karlen DL (2014) Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 230:340–347. doi: 10.1016/j.geoderma.2014.04.009

Rondon M, Ramirez J, Lehmann J (2005) Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In: Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry. Baltimore, MD, p 208

Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:134–151. doi: 10.1038/ismej.2010.58

Saito M, Marumoto T (2002) Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects. Plant Soil 244:273–279. doi: 10.1007/978-94-017-1284-2_27

Scheer C, Grace PR, Rowlings DW, Kimber S, Van Zwieten L (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil 345:47–58. doi: 10.1007/s11104-011-0759-1

Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394. doi: 10.1890/06-0219

Schmidt HP, Pandit BH, Martinsen V, Cornelissen G, Conte P, Kammann CI (2015) Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 5:723–741. doi: 10.3390/agriculture5030723

Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515. doi: 10.1111/j.1461-0248.2006.00910.x

Silber A, Levkovitch I, Graber ER (2010) PH-dependent mineral release and surface properties of cornstrawdbiochar: agronomic implications. Environ Sci Technol 44:9318–9323. doi: 10.1021/es101283d

Singh BP, Hatton BJ, Balwant S, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235. doi: 10.2134/jeq2009.0138

Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82. doi: 10.1016/S0065-2113(10)05002-9

Sollins P, Robertson GP, Uehara G (1988) Nutrient mobility in variable- and permanent charge soils. Biogeochemistry 6:181–199. doi: 10.1007/BF02182995

Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581. doi: 10.1016/j.chemosphere.2009.06.053

Spokas KA, Baker JM, Reicosky DC (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil 333:443–452. doi: 10.1007/s11104-010-0359-5

Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, DuSaire MG, Ro KS (2011) Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85:869–882. doi: 10.1016/j.chemosphere.2011.06.108

Spokas KA, Novak JM, Venterea RT (2012) Biochar’s role as an alternative N fertilizer: ammonia capture. Plant Soil 350:35–42. doi: 10.1007/s11104-011-0930-8

Steiner C, Das KC, Garcia M, Förster B, Zech W (2008a) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366. doi: 10.1016/j.pedobi.2007.08.002

Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008b) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899. doi: 10.1002/jpln.200625199

Stewart CE, Zheng J, Botte J, Cotrufo MF (2012) Co-generated fast pyrolysis biochar mitigates greenhouse gas emissions and increases carbon sequestration in temperate soils. GCB Bioenergy 5:153–164. doi: 10.1111/gcbb.12001

Swiatkowski A, Pakula M, Biniak S, Walczyk M (2004) Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead (II) ions. Carbon 42:3057–3069. doi: 10.1016/j.carbon.2004.06.043

Taghizadeh-Toosi A, Clough TJ, Condron LM, Sherlock RR, Anderson CR, Craigie RA (2011) Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J Environ Qual 40:468–476. doi: 10.2134/jeq2010.0419

Taghizadeh-Toosi A, Clough TJ, Sherlock RR, Condron LM (2012) Biochar adsorbed ammonia is bioavailable. Plant Soil 350:57–69. doi: 10.1007/s11104-011-0870-3

Taketani RG, Tsai SM (2010) The influence of different land uses on the structure of archaeal communities in Amazonian Anthrosols based on 16S rRNA and amoA genes. Microb Ecol 59:734–743. doi: 10.1007/s00248-010-9638-1

Taylor CB (1951) The nutritional requirements of the predominant bacterial flora of soil. J Appl Microbiol 14:101–111. doi: 10.1111/j.1365-2672.1951.tb01999.x

Thies JE, Rillig M (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 85–105

Tsai WT, Liu SC, Chen HR, Chang YM, Tsai YL (2012) Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 89:198–203. doi: 10.1016/j.chemosphere.2012.05.085

Turner ER (1955) The effect of certain adsorbents on the nodulation of clover plants. Ann Bot 19:149–160

Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27:205–212. doi: 10.1111/j.1475-2743.2011.00340.x

Van de Voorde TF, Van Noppen F, Nacheniu RW, Prins W, Mommer L, Van Groenigen JW, Bezemer TM (2014) Biochars produced from individual grassland species differ in their effect on plant growth. Basic Appl Ecol 15:18–25. doi: 10.1016/j.baae.2013.12.005

Van Zwieten L, Singh BP, Joseph S, Kimber S, Cowie A, Chan KY (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 227–249

Wang Z, Zheng H, Luo Y, Deng X, Herbert S, Xing B (2013) Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environ Pollut 174:289–296. doi: 10.1016/j.envpol.2012.12.003

Wang Y, Yin R, Liu R (2014) Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. J Anal Appl Pyrol 110:375–381. doi: 10.1016/j.jaap.2014.10.006

Wardle DA, Yeates GW, Nicholson KS, Bonner KI, Watson RN (1999) Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biol Biochem 31:1707–1720. doi: 10.1016/S0038-0717(99)00090-5

Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629–629. doi: 10.1126/science.1154960

Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300:9–20. doi: 10.1007/s11104-007-9391-5

Woolf D, Lehmann J (2012) Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111:83–95. doi: 10.1007/s10533-012-9764-6

Wu HW, Yip K, Kong ZY, Li CZ, Liu DW, Yu Y, Gao XP (2011) Removal and recycling of inherent inorganic nutrient species in mallee biomass and derived biochars by water leaching. Ind Eng Chem Res 50:12143–12151. doi: 10.1021/ie200679n

Xu G, Sun J, Shao H, Chang SX (2014) Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol Eng 62:54–60. doi: 10.1016/j.ecoleng.2013.10.027

Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188. doi: 10.1111/j.1747-0765.2007.00123.x

Yang L, Liao F, Huang M, Yang L, Li Y (2015) Biochar improves sugarcane seedling root and soil properties under a pot experiment. Sugar Tech 17:36–40. doi: 10.1007/s12355-014-0335-0

Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–1471. doi: 10.1016/j.chemosphere.2012.06.002

Ye L, Zhang J, Zhao J, Luo Z, Tu S, Yin Y (2015) Properties of biochar obtained from pyrolysis of bamboo shoot shell. J Anal Appl Pyrol 114:172–178. doi: 10.1016/j.jaap.2015.05.016

Yuan J, Xu R, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. doi: 10.1016/j.biortech.2010.11.018

Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China. Agric Ecosyst Environ 139:469–475. doi: 10.1016/j.agee.2010.09.003

Zhang P, Sun H, Yu L, Sun T (2013) Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars. J Hazard Mater 244:217–224. doi: 10.1016/j.jhazmat.2012.11.046

Zhang H, Voroney R, Price G (2015) Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations. Soil Biol Biochem 83:19–28. doi: 10.1016/j.soilbio.2015.01.006

Zheng H, Wang Z, Deng X, Zhao J, Luo Y, Novak J, Herbert S, Xing B (2013) Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour Technol 130:463–471. doi: 10.1016/j.biortech.2012.12.044

Zhu D, Pignatello JJ (2005) Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ Sci Technol 39:2033–2041. doi: 10.1021/es0491376

Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301. doi: 10.1021/es903140c

Zimmerman A, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar amended soils. Soil Biol Biochem 43:1169–1179. doi: 10.1016/j.soilbio.2011.02.005