Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: Insight into the electron transfer, radical oxidation and degradation pathways
Tóm tắt
Từ khóa
Tài liệu tham khảo
Poirier-Larabie, 2016, Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions, Sci. Total Environ., 557–558, 257, 10.1016/j.scitotenv.2016.03.057
Doretto, 2014, Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils, Sci. Total Environ., 476–477, 406, 10.1016/j.scitotenv.2014.01.024
Verlicchi, 2012, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review, Sci. Total Environ., 429, 123, 10.1016/j.scitotenv.2012.04.028
Zhang, 2015, Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance, Environ. Sci. Technol., 49, 6772, 10.1021/acs.est.5b00729
Michael, 2013, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review, Water Res., 47, 957, 10.1016/j.watres.2012.11.027
Zheng, 2018, Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction, Environ. Int., 115, 70, 10.1016/j.envint.2018.02.043
Santos, 2018, Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate, Sci. Total Environ., 615, 1070, 10.1016/j.scitotenv.2017.09.224
Zhao, 2013, Effect and mechanism of persulfate activated by different methods for PAHs removal in soil, J. Hazard. Mater., 254–255, 228, 10.1016/j.jhazmat.2013.03.056
Buxton, 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O−) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513, 10.1063/1.555805
Neta, 1988, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17, 1027, 10.1063/1.555808
Wang, 2018, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334, 10.1016/j.cej.2017.11.059
Rastogi, 2009, Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems, Appl. Catal. B-Environ., 85, 171, 10.1016/j.apcatb.2008.07.010
Al-Shamsi, 2013, Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron, Ind. Eng. Chem. Res., 52, 13564, 10.1021/ie400387p
Liang, 2009, pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene, J. Contam. Hydrol., 106, 173, 10.1016/j.jconhyd.2009.02.008
Zhou, 2008, Enhanced degradation of 2,4-dichlorophenol by ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance, Ultrason. Sonochem., 15, 782, 10.1016/j.ultsonch.2008.01.005
De Luca, 2015, Study of Fe(III)-NTA chelates stability for applicability in photo-Fenton at neutral pH, Appl. Catal. B-Environ., 179, 372, 10.1016/j.apcatb.2015.05.025
F. Edition, Guidelines for drinking-water quality, WHO chronicle 38 (2011) 104–108.
Ahmad, 2012, Oxidative and reductive pathways in iron-ethylenediaminetetraacetic acid-activated persulfate systems, J. Environ. Eng., 138, 411, 10.1061/(ASCE)EE.1943-7870.0000496
Duan, 2016, Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds, Appl. Catal. B-Environ., 194, 7, 10.1016/j.apcatb.2016.04.043
Kang, 2016, Carbocatalytic activation of persulfate for removal of antibiotics in water solutions, Chem. Eng. J., 288, 399, 10.1016/j.cej.2015.12.040
Chen, 2012, Fast and slow rates of naphthalene sorption to biochars produced at different temperatures, Environ. Sci. Technol., 46, 11104, 10.1021/es302345e
Fang, 2017, Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation, Appl. Catal. B-Environ., 214, 34, 10.1016/j.apcatb.2017.05.036
Gai, 2017, Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol, Appl. Catal. B-Environ., 204, 566, 10.1016/j.apcatb.2016.12.005
Shen, 2014, In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification, Appl. Catal. B-Environ., 152–153, 140, 10.1016/j.apcatb.2014.01.032
Fang, 2015, Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation, Bioresour. Technol., 176, 210, 10.1016/j.biortech.2014.11.032
Fang, 2014, Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation, Environ. Sci. Technol., 48, 1902, 10.1021/es4048126
Fang, 2015, Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation, Environ. Sci. Technol., 49, 5645, 10.1021/es5061512
Yang, 2016, Degradation of p-nitrophenol on biochars: role of persistent free radicals, Environ. Sci. Technol., 50, 694, 10.1021/acs.est.5b04042
Qian, 2018, Hydrophilic mesoporous carbon as iron(III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants, Appl. Catal. B-Environ., 231, 108, 10.1016/j.apcatb.2018.03.016
Qin, 2017, Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III), ACS Appl. Mater. Interfaces, 9, 17115, 10.1021/acsami.7b03310
Ribeiro, 2010, Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models, J. Comput.-Aided Mol. Des., 24, 317, 10.1007/s10822-010-9333-9
Lu, 2012, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem., 33, 580, 10.1002/jcc.22885
Morell, 2005, New dual descriptor for chemical reactivity, J. Phys. Chem. A, 109, 205, 10.1021/jp046577a
Zou, 2013, Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine, Environ. Sci. Technol., 47, 11685, 10.1021/es4019145
Yin, 2019, Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism, Chem. Eng. J., 357, 589, 10.1016/j.cej.2018.09.184
Liu, 2016, Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: stoichiometric efficiency and transformation products, Environ. Sci. Technol., 50, 890, 10.1021/acs.est.5b04815
Fang, 2017, Activation of persulfate with vanadium species for PCBs degradation: a mechanistic study, Appl. Catal. B-Environ., 202, 1, 10.1016/j.apcatb.2016.09.006
Qi, 2018, Efficacy of activated persulfate in inactivating Escherichia coli O157:H7 and Listeria monocytogenes, Int. J. Food Microbiol., 284, 40, 10.1016/j.ijfoodmicro.2018.06.021
Chaikin, 1949, Reduction of aldehydes, ketones and acid chlorides by sodium borohydride, J. Am. Chem. Soc., 71, 122, 10.1021/ja01169a033
Xiao, 2014, Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures, Environ. Sci. Technol., 48, 3411, 10.1021/es405676h
Zheng, 2017, Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism, Bioresour. Technol., 244, 10.1016/j.biortech.2017.05.025
Ji, 2014, Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics, Sci. Total Environ., 472, 800, 10.1016/j.scitotenv.2013.11.008
Liang, 2004, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple, Chemosphere, 55, 1213, 10.1016/j.chemosphere.2004.01.029
Anipsitakis, 2004, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 38, 3705, 10.1021/es035121o
Herrmann, 1995, Time-resolved UV/VIS diode array absorption spectroscopy of SOx−(x=3, 4, 5) radical anions in aqueous solution, J. Mol. Struct., 348, 183, 10.1016/0022-2860(95)08619-7
Wang, 2016, Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations, Appl. Catal. B-Environ., 198, 295, 10.1016/j.apcatb.2016.05.075
Hussain, 2017, Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol, Chem. Eng. J., 311, 163, 10.1016/j.cej.2016.11.085
Li, 2004, Distinguishing the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method, Anal. Chim. Acta, 512, 121, 10.1016/j.aca.2004.02.020
Timmins, 1999, Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO• and SO4•−, Free Radic. Biol. Med., 27, 329, 10.1016/S0891-5849(99)00049-0
Fukui, 1970, Theory of orientation and stereoselection, 1
Dantas, 2008, Sulfamethoxazole abatement by means of ozonation, J. Hazard. Mater., 150, 790, 10.1016/j.jhazmat.2007.05.034
Zhang, 2017, Elucidating ozonation mechanisms of organic micropollutants based on DFT calculations: taking sulfamethoxazole as a case, Environ. Pollut., 220, 971, 10.1016/j.envpol.2016.10.076
Du, 2018, Weak magnetic field for enhanced oxidation of sulfamethoxazole by Fe0/H2O2 and Fe0/persulfate: performance, mechanisms, and degradation pathways, Chem. Eng. J., 351, 532, 10.1016/j.cej.2018.06.094
Qi, 2018, Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation, Chem. Eng. J., 353, 490, 10.1016/j.cej.2018.07.056
Yang, 2017, Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): formation of oxidation products and effect of bicarbonate, Water Res., 118, 196, 10.1016/j.watres.2017.03.054