Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: Insight into the electron transfer, radical oxidation and degradation pathways

Chemical Engineering Journal - Tập 362 - Trang 561-569 - 2019
Huazhe Wang1, Wanqian Guo1, Renli Yin1, Juanshan Du1, Qinglian Wu1, Haichao Luo1, Banghai Liu1, Fred Sseguya1, Nanqi Ren1
1State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Poirier-Larabie, 2016, Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions, Sci. Total Environ., 557–558, 257, 10.1016/j.scitotenv.2016.03.057

Doretto, 2014, Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils, Sci. Total Environ., 476–477, 406, 10.1016/j.scitotenv.2014.01.024

Verlicchi, 2012, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review, Sci. Total Environ., 429, 123, 10.1016/j.scitotenv.2012.04.028

Zhang, 2015, Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance, Environ. Sci. Technol., 49, 6772, 10.1021/acs.est.5b00729

Michael, 2013, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review, Water Res., 47, 957, 10.1016/j.watres.2012.11.027

Zheng, 2018, Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction, Environ. Int., 115, 70, 10.1016/j.envint.2018.02.043

Santos, 2018, Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate, Sci. Total Environ., 615, 1070, 10.1016/j.scitotenv.2017.09.224

Zhao, 2013, Effect and mechanism of persulfate activated by different methods for PAHs removal in soil, J. Hazard. Mater., 254–255, 228, 10.1016/j.jhazmat.2013.03.056

Buxton, 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O−) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513, 10.1063/1.555805

Neta, 1988, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17, 1027, 10.1063/1.555808

Wang, 2018, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334, 10.1016/j.cej.2017.11.059

Rastogi, 2009, Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems, Appl. Catal. B-Environ., 85, 171, 10.1016/j.apcatb.2008.07.010

Al-Shamsi, 2013, Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron, Ind. Eng. Chem. Res., 52, 13564, 10.1021/ie400387p

Liang, 2009, pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene, J. Contam. Hydrol., 106, 173, 10.1016/j.jconhyd.2009.02.008

Zhou, 2008, Enhanced degradation of 2,4-dichlorophenol by ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance, Ultrason. Sonochem., 15, 782, 10.1016/j.ultsonch.2008.01.005

De Luca, 2015, Study of Fe(III)-NTA chelates stability for applicability in photo-Fenton at neutral pH, Appl. Catal. B-Environ., 179, 372, 10.1016/j.apcatb.2015.05.025

F. Edition, Guidelines for drinking-water quality, WHO chronicle 38 (2011) 104–108.

Ahmad, 2012, Oxidative and reductive pathways in iron-ethylenediaminetetraacetic acid-activated persulfate systems, J. Environ. Eng., 138, 411, 10.1061/(ASCE)EE.1943-7870.0000496

Duan, 2016, Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds, Appl. Catal. B-Environ., 194, 7, 10.1016/j.apcatb.2016.04.043

Kang, 2016, Carbocatalytic activation of persulfate for removal of antibiotics in water solutions, Chem. Eng. J., 288, 399, 10.1016/j.cej.2015.12.040

Chen, 2012, Fast and slow rates of naphthalene sorption to biochars produced at different temperatures, Environ. Sci. Technol., 46, 11104, 10.1021/es302345e

Fang, 2017, Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation, Appl. Catal. B-Environ., 214, 34, 10.1016/j.apcatb.2017.05.036

Gai, 2017, Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol, Appl. Catal. B-Environ., 204, 566, 10.1016/j.apcatb.2016.12.005

Shen, 2014, In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification, Appl. Catal. B-Environ., 152–153, 140, 10.1016/j.apcatb.2014.01.032

Fang, 2015, Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation, Bioresour. Technol., 176, 210, 10.1016/j.biortech.2014.11.032

Fang, 2014, Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation, Environ. Sci. Technol., 48, 1902, 10.1021/es4048126

Fang, 2015, Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation, Environ. Sci. Technol., 49, 5645, 10.1021/es5061512

Yang, 2016, Degradation of p-nitrophenol on biochars: role of persistent free radicals, Environ. Sci. Technol., 50, 694, 10.1021/acs.est.5b04042

Qian, 2018, Hydrophilic mesoporous carbon as iron(III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants, Appl. Catal. B-Environ., 231, 108, 10.1016/j.apcatb.2018.03.016

Qin, 2017, Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III), ACS Appl. Mater. Interfaces, 9, 17115, 10.1021/acsami.7b03310

Ribeiro, 2010, Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models, J. Comput.-Aided Mol. Des., 24, 317, 10.1007/s10822-010-9333-9

Lu, 2012, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem., 33, 580, 10.1002/jcc.22885

Morell, 2005, New dual descriptor for chemical reactivity, J. Phys. Chem. A, 109, 205, 10.1021/jp046577a

Zou, 2013, Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine, Environ. Sci. Technol., 47, 11685, 10.1021/es4019145

Yin, 2019, Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism, Chem. Eng. J., 357, 589, 10.1016/j.cej.2018.09.184

Liu, 2016, Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: stoichiometric efficiency and transformation products, Environ. Sci. Technol., 50, 890, 10.1021/acs.est.5b04815

Fang, 2017, Activation of persulfate with vanadium species for PCBs degradation: a mechanistic study, Appl. Catal. B-Environ., 202, 1, 10.1016/j.apcatb.2016.09.006

Qi, 2018, Efficacy of activated persulfate in inactivating Escherichia coli O157:H7 and Listeria monocytogenes, Int. J. Food Microbiol., 284, 40, 10.1016/j.ijfoodmicro.2018.06.021

Chaikin, 1949, Reduction of aldehydes, ketones and acid chlorides by sodium borohydride, J. Am. Chem. Soc., 71, 122, 10.1021/ja01169a033

Xiao, 2014, Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures, Environ. Sci. Technol., 48, 3411, 10.1021/es405676h

Zheng, 2017, Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism, Bioresour. Technol., 244, 10.1016/j.biortech.2017.05.025

Ji, 2014, Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics, Sci. Total Environ., 472, 800, 10.1016/j.scitotenv.2013.11.008

Liang, 2004, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple, Chemosphere, 55, 1213, 10.1016/j.chemosphere.2004.01.029

Anipsitakis, 2004, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 38, 3705, 10.1021/es035121o

Herrmann, 1995, Time-resolved UV/VIS diode array absorption spectroscopy of SOx−(x=3, 4, 5) radical anions in aqueous solution, J. Mol. Struct., 348, 183, 10.1016/0022-2860(95)08619-7

Wang, 2016, Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations, Appl. Catal. B-Environ., 198, 295, 10.1016/j.apcatb.2016.05.075

Hussain, 2017, Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol, Chem. Eng. J., 311, 163, 10.1016/j.cej.2016.11.085

Li, 2004, Distinguishing the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method, Anal. Chim. Acta, 512, 121, 10.1016/j.aca.2004.02.020

Timmins, 1999, Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO• and SO4•−, Free Radic. Biol. Med., 27, 329, 10.1016/S0891-5849(99)00049-0

Fukui, 1970, Theory of orientation and stereoselection, 1

Dantas, 2008, Sulfamethoxazole abatement by means of ozonation, J. Hazard. Mater., 150, 790, 10.1016/j.jhazmat.2007.05.034

Zhang, 2017, Elucidating ozonation mechanisms of organic micropollutants based on DFT calculations: taking sulfamethoxazole as a case, Environ. Pollut., 220, 971, 10.1016/j.envpol.2016.10.076

Du, 2018, Weak magnetic field for enhanced oxidation of sulfamethoxazole by Fe0/H2O2 and Fe0/persulfate: performance, mechanisms, and degradation pathways, Chem. Eng. J., 351, 532, 10.1016/j.cej.2018.06.094

Qi, 2018, Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation, Chem. Eng. J., 353, 490, 10.1016/j.cej.2018.07.056

Yang, 2017, Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): formation of oxidation products and effect of bicarbonate, Water Res., 118, 196, 10.1016/j.watres.2017.03.054

Du, 2018, Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2: kinetics, mechanisms, and pathways, Water Res., 138, 323, 10.1016/j.watres.2017.12.046