Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Biochar như một phương pháp cải tạo đất lâu dài khả thi cho việc ổn định thực vật đối với đất bị ô nhiễm nguyên tố vi lượng (TE)
Tóm tắt
Các loại đất bị ô nhiễm bởi các nguyên tố vi lượng (TE) gây ra rủi ro cao cho những khu vực xung quanh vì các TE có thể lan truyền qua quá trình xói mòn gió và nước hoặc quá trình rửa trôi. Một phương pháp có thể để giảm thiểu sự chuyển giao TE từ những khu vực này là quá trình ổn định thực vật (phytostabilisation). Đây là một chiến lược phục hồi lâu dài và tiết kiệm chi phí nhằm mục đích cố định TE trong đất thông qua việc phủ thực vật và áp dụng chất điều hòa. Một trong những chất điều hòa khả thi là biochar. Đây là vật liệu hữu cơ đã bị cháy, được chứng minh là có khả năng cố định kim loại nhờ vào diện tích bề mặt cao và pH kiềm. Đã có những lo ngại về độ bền lâu dài của hiệu ứng cố định này, vì nó có thể suy giảm khi các carbonat trong biochar đã hòa tan. Do đó, trong một thí nghiệm trong chậu, chúng tôi đã xác định sự hấp thu kim loại của cây cỏ lúa mì (Lolium perenne) từ ba loại đất ô nhiễm TE được xử lý bằng hai loại biochar có độ pH khác nhau (axit, 2.80; kiềm, 9.33) và hàm lượng carbonat (0.17 và 7.3%). Khối lượng rễ đã tăng lên nhờ việc áp dụng biochar kiềm do sự giảm độc tính của TE. Khả năng sinh khả dụng của kẽm và đồng cũng như sự hấp thu của thực vật đều giảm bởi cả hai loại biochar, cho thấy rằng diện tích bề mặt đóng vai trò quan trọng trong việc cố định kim loại. Biochar có thể được sử dụng như một chất điều hòa lâu dài cho việc cố định TE ngay cả sau khi hiệu ứng kiềm của nó đã giảm đi.
Từ khóa
#ô nhiễm đất #nguyên tố vi lượng #biochar #ổn định thực vật #sinh khả dụng kim loạiTài liệu tham khảo
Andrews M, Sprent JI, Raven JA, Eady PE (1999) Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies. Plant Cell Environ 22:949–958
Blume HP, Brümmer GW, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M (2010) Scheffer/Shachtschabel: Lehrbuch der Bodenkunde, 16. Springer Spektrum, Heidelberg
Brennan A, Jiménez E, Puschenreiter M, Alburquerque J, Switzer C (2014) Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant Soil 379:351–360
BUWAL (2005) Gefährdungsabschätzung und Massnahmen bei schadstoffbelasteten Böden. Bundesamt für Umwelt, Wald und Landschaft, Bern
Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884
EC (2014) Progress in management of contaminated sites (CSI 015/LSI 003). 26376 EN, Joint Research Centre of the European Commission, Luxemburg
Ericsson T (1995) Growth and shoot:root ratio of seedlings in relation to nutrient availability. In: Nilsson LO, Hüttl RF, Johansson UT (eds) Nutrient uptake and cycling in forest ecosystems. Developments in plant and soil sciences. Springer, Netherlands, pp 205–214
Evangelou MWH, Hockmann K, Pokharel R, Jakob A, Schulin R (2012) Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils. J Environ Manag 108:102–107
Evangelou MWH, Robinson BH, Gunthardt-Goerg MS, Schulin R (2013) Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Int J Phytoremediation 15:77–90
Evangelou MWH, Brem A, Ugolini F, Abiven S, Schulin R (2014) Soil application of biochar produced from biomass grown on trace element contaminated land. J Environ Manag 146:100–106
FAL, RAC, FAW (1996) Extraktion von Schwermetallen mit Natriumnitrat (1:2.5). Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten. Eidgenössische Forschungsanstalt FAL, RAC, FAW
Fässler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R (2010) Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agric Ecosyst Environ 136:49–58
Fellet G, Marchiol L, Delle Vedove G, Peressotti A (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83:1262–1267
Fellet G, Marmiroli M, Marchiol L (2014) Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci Total Environ 468–469:598–608
Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157:2654–2662
Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenerg 57:196–204
Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48
Kinniburgh DG, Milne CJ, Venema P (1995) Design and construction of a personal-computer-based automatic titrator. Soil Sci Soc Am J 59:417–422
Lehmann J, Joseph S (eds) (2009) Biochar for environmental management: science and technology. Earthscan, London
Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314
Méndez A, Gómez A, Paz-Ferreiro J, Gascó G (2012) Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89:1354–1359
Menon M, Hermle S, Abbaspour KC, Gunthardt-Georg MS, Oswald SE, Schulin R (2005) Water regime of metal-contaminated soil under juvenile forest vegetation. Plant Soil 271:227–241
Mora MDL, Rosas A, Ribera A, Rengel Z (2009) Differential tolerance to Mn toxicity in perennial ryegrass genotypes: involvement of antioxidative enzymes and root exudation of carboxylates. Plant Soil 320:79–89
Namgay T, Singh B, Singh BP (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Aust J Soil Res 48:638–647
Olsen S, Cole C, Watanabe F, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939
Park J, Choppala G, Bolan N, Chung J, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451
Puga AP, Abreu CA, Melo LCA, Beesley L (2015) Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J Environ Manag 159:86–93
Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman A, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284
Rees F, Simonnot MO, Morel JL (2014) Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur J Soil Sci 65:149–161
Rees F, Germain C, Sterckeman T, Morel J-L (2015) Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd–Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant Soil 395:57–73
Robinson BH, Banuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Cr Rev Plant Sci 28:240–266
Sindelar HR, Brown MT, Boyer TH (2015) Effects of natural organic matter on calcium and phosphorus co-precipitation. Chemosphere 138:218–224
Smith GS, Edmeades DC, Upsdell M (1983) Manganese status of New Zealand pastures 1. Toxicity in ryegrass, white clover, and lucerne. N Z J Agric Res 26:215–221
Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441
Wang T, Camps-Arbestain M, Hedley M, Bishop P (2012) Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 357:173–187
Xu G, Sun J, Shao H, Chang SX (2014) Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol Eng 62:54–60
Yuan J-H, Xu R-K, Qian W, Wang R-H (2011a) Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J Soils Sediments 11:741–750
Yuan JH, Xu RK, Zhang H (2011b) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497