Biochar applications and modern techniques for characterization

Farrukh Raza Amin1, Yan Huang2, Yiming He2, Ruihong Zhang3, Guangqing Liu2, Chang Chen2
1College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
2Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
3Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmad M, Usman AR, Lee SS et al (2012) Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. J Ind Eng Chem 18:198–204. doi: 10.1016/j.jiec.2011.11.013

Ahmad M, Rajapaksha AU, Lim JE et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–23. doi: 10.1016/j.chemosphere.2013.10.071

Alper K, Tekin K, Karagöz S (2014) Pyrolysis of agricultural residues for bio-oil production. Clean Technol Environ Policy 17:211–223. doi: 10.1007/s10098-014-0778-8

Beesley L, Moreno-Jiménez E, Gomez-Eyles JL et al (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. doi: 10.1016/j.envpol.2011.07.023

Brewer CE, Chuang VJ, Masiello C et al (2014) New approaches to measuring biochar density and porosity. Biomass Bioenergy 66:176–185. doi: 10.1016/j.biombioe.2014.03.059

Bruun EW, Hauggaard-Nielsen H, Ibrahim N et al (2011) Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 35:1182–1189. doi: 10.1016/j.biombioe.2010.12.008

Calderón FJ, McCarty GW, Reeves JB (2006) Pyrolsis-MS and FT-IR analysis of fresh and decomposed dairy manure. J Anal Appl Pyrolysis 76:14–23. doi: 10.1016/j.jaap.2005.06.009

Cantrell KB, Hunt PG, Uchimiya M et al (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. doi: 10.1016/j.biortech.2011.11.084

Cao X, Harris W (2010) Properties of dairy manure derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228. doi: 10.1016/j.biortech.2010.02.052

Cao X, Ma L, Liang Y et al (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889. doi: 10.1021/es103752u

Charon E, Rouzaud JN, Aléon J (2014) Graphitization at low temperatures in the presence of iron implications in planetology. Carbon N Y 66:178–190. doi: 10.1016/j.carbon.2013.08.056

Chen P, Sun M, Zhu Z et al (2015) Optimization of ultrasonic-assisted extraction for determination of polycyclic aromatic hydrocarbons in biochar-based fertilizer by gas chromatography–mass spectrometry. Anal Bioanal Chem 407:6149–6157. doi: 10.1007/s00216-015-8790-3

Cheng CH, Lehmann J (2009) Ageing of black carbon along a temperature gradient. Chemosphere 75:1021–1027. doi: 10.1016/j.chemosphere.2009.01.045

Chintala R, Mollinedo J, Schumacher TE et al (2013) Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci 60:393–404. doi: 10.1080/03650340.2013.789870

Chintala R, Schumacher TE, McDonald LM et al (2014) Phosphorus sorption and availability from biochars and soil/biochar mixtures. CLEAN Soil Air Water 42:626–634. doi: 10.1002/clen.201300089

Cordero T, Marquez F, Rodriguez-Mirasol J, Rodriguez J (2001) Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 80:1567–1571. doi: 10.1016/S0016-2361(01)00034-5

Cowie AL, Downie AE, George BH et al (2012) Is sustainability certification for biochar the answer to environmental risks? Pesqui Agropecu Bras 47:637–648. doi: 10.1590/S0100-204X2012000500002

Creamer AE, Gao B, Zhang M (2014) Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J 249:174–179. doi: 10.1016/j.cej.2014.03.105

Das DD, Schnitzer MI, Monreal CM, Mayer P (2009) Chemical composition of acid-base fractions separated from bio oil derived by fast pyrolysis of chicken manure. Bioresour Technol 100:6524–6532. doi: 10.1016/j.biortech.2009.06.104

Datsyuk V, Kalyva M, Papagelis K et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon N Y 46:833–840. doi: 10.1016/j.carbon.2008.02.012

Dempster DN, Gleeson DB, Solaiman ZM et al (2012) Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354:311–324. doi: 10.1007/s11104-011-1067-5

Ding W, Dong X, Ime IM et al (2014) Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105:68–74. doi: 10.1016/j.chemosphere.2013.12.042

Enders A, Hanley K, Whitman T et al (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653. doi: 10.1016/j.biortech.2012.03.022

Fabbri D, Rombolà AG, Torri C, Spokas KA (2013) Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. J Anal Appl Pyrolysis 103:60–67. doi: 10.1016/j.jaap.2012.10.003

Feng Y, Xu Y, Yu Y et al (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88. doi: 10.1016/j.soilbio.2011.11.016

Foo LPY, Tee CZ, Raimy NR et al (2012) Potential Malaysia agricultural waste materials for the biosorption of cadmium(II) from aqueous solution. Clean Technol Environ Policy 14:273–280. doi: 10.1007/s10098-011-0398-5

Freitas JCC, Passamani EC, Orlando MTD et al (2002) Effects of ferromagnetic inclusions on 13C MAS NMR spectra of heat treated peat samples. Energy Fuels 16:1068–1075. doi: 10.1021/ef010283w

Gaskin JW, Steiner C, Harris K et al (2008) Effect of low temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51:2061–2069. doi: 10.13031/2013.25409

Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biol Fertil Soils 35:219–230. doi: 10.1007/s00374-002-0466-4

Heymann K, Lehmann J, Solomon D et al (2011) C 1 s K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy for characterizing functional group chemistry of black carbon. Org Geochem 42:1055–1064. doi: 10.1016/j.orggeochem.2011.06.021

Hiller E, Fargasová A, Zemanová L, Bartal M (2008) Influence of wheat ash on the MCPA immobilization in agricultural soils. Bull Environ Contam Toxicol 81:285–288. doi: 10.1007/s00128-008-9400-2

Holzwarth U, Gibson N (2011) The Scherrer equation versus the “Debye–Scherrer equation”. Nat Nanotechnol 6:534. doi: 10.1038/nnano.2011.145

Hossain MK, Strezov Vladimir V, Chan KY et al (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manag 92:223–228. doi: 10.1016/j.jenvman.2010.09.008

Hu X, Ding Z, Zimmerman AR et al (2015) Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res 68:206–216. doi: 10.1016/j.watres.2014.10.009

Huisman DJ, Braadbaart F, van Wijk IM, van Os BJH (2012) Ashes to ashes, charcoal to dust: micromorphological evidence for ash-induced disintegration of charcoal in Early Neolithic (LBK) soil features in Elsloo (The Netherlands). J Archaeol Sci 39:994–1004. doi: 10.1016/j.jas.2011.11.019

Inyang M, Gao B, Yao Y et al (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56. doi: 10.1016/j.biortech.2012.01.072

Ippolito J, Novak JM, Busscher WJ et al (2012) Switchgrass biochar affects two aridisols. J Environ Qual 41:1123–1130. doi: 10.2134/jeq2011.0100

Jaafar NM, Clode PL, Abbott LK (2014) Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J Integr Agric 13:483–490. doi: 10.1016/S2095-3119(13)60703-0

Jia Y, Xu L, Wang X, Demopoulos GP (2007) Infrared spectroscopic and X-rays diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim Cosmochim Acta 71:1643–1654. doi: 10.1016/j.gca.2006.12.021

Jiang W, Saxena A, Song B et al (2004) Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20:11433–11442. doi: 10.1021/la049043

Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity: results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313. doi: 10.1016/j.agee.2010.12.005

Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253. doi: 10.1021/es9031419

Khan S, Wang N, Reid BJ et al (2013) Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environ Pollut 175:64–68. doi: 10.1016/j.envpol.2012.12.014

Khan S, Reid BJ, Li G, Zhu Y-G (2014) Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China. Environ Int 68:154–161. doi: 10.1016/j.envint.2014.03.017

Kim WK, Shim T, Kim YS et al (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour Technol 138:266–270. doi: 10.1016/j.biortech.2013.03.186

Lashari MS, Ye Y, Ji H et al (2014) Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. J Sci Food Agric. doi: 10.1002/jsfa.6825

Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology, 1st edn. EARTHSCAN, Gateshead

Li P, Jiang EY, Bai HL (2011) Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering. Phys D Appl Phys. doi: 10.1088/0022-3727/44/7/075003

Li K, Jiang Y, Wang X et al (2016) Effect of nitric acid modification on the lead(II) adsorption of mesoporous biochars with different mesopore size distributions. Clean Technol Environ Policy 18:797–805. doi: 10.1007/s10098-015-1056-0

Lian F, Huang F, Chen W et al (2011) Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems. Environ Pollut 159:850–857. doi: 10.1016/j.envpol.2011.01.002

Illingworth J, Williams PT, Rand B (2013) Characterisation of biochar porosity from pyrolysis of biomass flax fibre. J Energy Inst 86(2):63–70. doi: 10.1179/1743967112Z.00000000046

Lou L, Luo L, Yang Q et al (2012) Release of pentachlorophenol from black carbon-inclusive sediments under different environmental conditions. Chemosphere 88:598–604. doi: 10.1016/j.chemosphere.2012.03.039

Maroušek J (2014) Significant breakthrough in biochar cost reduction. Clean Technol Environ Policy 16:1821–1825. doi: 10.1007/s10098-014-0730-y

McBeath AV, Smernik RJ, Schneider MPW et al (2011) Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR. Org Geochem 42:1194–1202. doi: 10.1016/j.orggeochem.2011.08.008

McBeath AV, Smernik RJ, Krull ES, Lehmann J (2014) The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study. Biomass Bioenergy 60:121–129. doi: 10.1016/j.biombioe.2013.11.002

Mohan D, Pittman CU, Bricka M et al (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310:57–73. doi: 10.1016/j.jcis.2007.01.020

Mohan D, Kumar H, Sarswat A et al (2014a) Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem Eng J 236:513–528. doi: 10.1016/j.cej.2013.09.057

Mohan D, Sarswat A, Ok YS, Pittman CU (2014b) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent: a critical review. Bioresour Technol 160:191–202. doi: 10.1016/j.biortech.2014.01.120

Mohan D, Singh P, Sarswat A et al (2015) Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. J Colloid Interface Sci 448:238–250. doi: 10.1016/j.jcis.2014.12.030

Morales VL, Pérez-Reche FJ, Hapca SM et al (2015) Reverse engineering of biochar. Bioresour Technol 183:163–174. doi: 10.1016/j.biortech.2015.02.043

Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–255. doi: 10.1016/j.geoderma.2011.04.021

Nartey OD, Zhao B (2014) Biochar preparation, characterization, and adsorptive capacity and its effect on bio availability of contaminants: an overview. Adv Mater Sci Eng 2014:1–12. doi: 10.1155/2014/715398

Nguyen BT, Lehmann J, Hockaday WC et al (2010) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Technol 44:3324–3331. doi: 10.1021/es903016y

Novak JM, Busscher WJ (2013) Advanced biofuels and bioproducts. Springer, New York, pp 69–96. doi: 10.1007/978-1-4614-3348-4_7

Novak JM, Busscher WJ, Laird DL et al (2009) Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci 174:105–112. doi: 10.1097/SS.0b013e3181981d9a

Park JH, Choppala GK, Bolan NS et al (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451. doi: 10.1007/s11104-011-0948-y

Petit C, Kante K, Bandosz TJ (2010) The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon N Y 48:654–667. doi: 10.1016/j.carbon.2009.10.007

Rajkovich S, Enders A, Hanley K et al (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284. doi: 10.1007/s00374-011-0624-7

Razon LF (2014) Is nitrogen fixation (once again) “vital to the progress of civilized humanity”? Clean Technol Environ Policy. doi: 10.1007/s10098-014-0835-3

Rutigliano FA, Romano M, Marzaioli R et al (2014) Effect of biochar addition on soil microbial community in a wheat crop. Eur J Soil Biol 60:9–15. doi: 10.1016/j.ejsobi.2013.10.007

Shafeeyan MS, Daud WMAW, Houshmand A, Arami-Niya A (2011) Ammonia modification of activated carbon to enhance carbon dioxide adsorption: effect of pre-oxidation. Appl Surf Sci 257:3936–3942. doi: 10.1016/j.apsusc.2010.11.127

Singh B, Fang Y, Cowie BCC, Thomsen L (2014) NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars. Org Geochem 77:1–10. doi: 10.1016/j.orggeochem.2014.09.006

Spokas KA, Novak JM, Venterea RT (2012) Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant Soil 350:35–42. doi: 10.1007/s11104-011-0930-8

Tong XJ, Li JY, Yuan JH, Xu RK (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chem Eng J 172:828–834. doi: 10.1016/j.cej.2011.06.069

Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481. doi: 10.1016/j.rser.2015.10.122

Turrado Fernández S, Paredes Sánchez JP, Gutiérrez Trashorras AJ (2015) Analysis of forest residual biomass potential for bioenergy production in Spain. Clean Technol Environ Policy. doi: 10.1007/s10098-015-1008-8

Ubando AT, Culaba AB, Aviso KB et al (2014) Fuzzy mixed-integer linear programming model for optimizing a multi-functional bioenergy system with biochar production for negative carbon emissions. Clean Technol Environ Policy 16:1537–1549. doi: 10.1007/s10098-014-0721-z

Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011a) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 82:1431–1437. doi: 10.1016/j.chemosphere.2010.11.050

Uchimiya M, Wartelle LH, Klasson KT et al (2011b) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510. doi: 10.1021/jf104206c

Vithanage M, Rajapaksha AU, Ahmad M et al (2015) Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. J Environ Manag 151:443–449. doi: 10.1016/j.jenvman.2014.11.005

Vochozka M, Maroušková A, Váchal J, Straková J (2016a) Biochar pricing hampers biochar farming. Clean Technol Environ Policy. doi: 10.1007/s10098-016-1113-3

Vochozka M, Maroušková A, Váchal J, Straková J (2016b) Reengineering the paper mill waste management. Clean Technol Environ Policy 18:323–329. doi: 10.1007/s10098-015-1012-z

Wang S, Gao B, Zimmerman AR et al (2014) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175C:391–395. doi: 10.1016/j.biortech.2014.10.104

Wang S, Gao B, Li Y et al (2015a) Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead. Bioresour Technol 181:13–17. doi: 10.1016/j.biortech.2015.01.044

Wang S, Gao B, Zimmerman AR et al (2015b) Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere 134:257–262. doi: 10.1016/j.chemosphere.2015.04.062

Wen B, Zhang J, Zhang S et al (2007) Phenanthrene sorption to soil humic acid and different humin fractions. Environ Sci Technol 41:3165–3171. doi: 10.1021/es062262s

Wiedemeier DB, Abiven S, Hockaday WC et al (2015) Aromaticity and degree of aromatic condensation of char. Org Geochem 78:135–143. doi: 10.1016/j.orggeochem.2014.10.002

Wu H, Gao G, Zhou X, Zhang Y, Guo S (2012) Control on the formation of Fe3O4 nanoparticles on chemically reduced graphene oxide surfaces. CrystEngComm 14:499–504. doi: 10.1039/C1CE05724C

Xiu S, Shahbazi A, Wang L, Wallace CW (2010) Supercritical ethanol liquefaction of swine manure for bio-oils production Department of Natural Resource and Environmental Design, Biological Engineering Program, North Caroli. Am J Eng Appl Sci 3:494–500

Yang JE, Skogley EO, Ahmad M et al (2013) Carbonaceous resin capsule for vapor-phase monitoring of volatile hydrocarbons in soil: partitioning and kinetic model verification. Environ Geochem Health 35:715–725. doi: 10.1007/s10653-013-9529-8

Yao Y, Gao B, Inyang M et al (2011a) Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J Hazard Mater 190:501–507. doi: 10.1016/j.jhazmat.2011.03.083

Yao Y, Gao B, Inyang M et al (2011b) Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 102:6273–6278. doi: 10.1016/j.biortech.2011.03.006

Yao Y, Gao B, Chen J et al (2013) Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresour Technol 138:8–13

Yao Y, Gao B, Fang J et al (2014) Characterization and environmental applications of clay–biochar composites. Chem Eng J 242:136–143. doi: 10.1016/j.cej.2013.12.062

Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K (2015) Physical and chemical characterization of waste wood derived biochars. Waste Manag 36:256–268. doi: 10.1016/j.wasman.2014.10.029

Zhang M, Gao B (2013) Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem Eng J 226:286–292. doi: 10.1016/j.cej.2013.04.077

Zhang M, Gao B, Yao Y et al (2012a) Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem Eng J 210:26–32. doi: 10.1016/j.cej.2012.08.052

Zhang M, Gao B, Yao Y et al (2012b) Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci Total Environ 435–436:567–572. doi: 10.1016/j.scitotenv.2012.07.038

Zhang M, Gao B, Varnoosfaderani S et al (2013a) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462. doi: 10.1016/j.biortech.2012.11.132

Zhang M, Gao B, Yao Y, Inyang M (2013b) Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Chemosphere 92:1042–1047. doi: 10.1016/j.chemosphere.2013.02.050

Zhang J, Zhong Z, Zhang B et al (2016) Prediction of kinetic parameters of biomass pyrolysis based on the optimal mixture design method. Clean Technol Environ Policy. doi: 10.1007/s10098-016-1137-8

Zhao MY, Enders A, Lehmann J (2014) Short- and long-term flammability of biochars. Biomass Bioenergy 69:183–191. doi: 10.1016/j.biombioe.2014.07.017

Zhou Y, Gao B, Zimmerman AR et al (2014a) Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour Technol 152:538–542. doi: 10.1016/j.biortech.2013.11.021

Zhou Y, Gao B, Zimmerman AR, Cao X (2014b) Biochar-supported zerovalent iron reclaims silver from aqueous solution to form antimicrobial nanocomposite. Chemosphere 117:801–805. doi: 10.1016/j.chemosphere.2014.10.057

Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301. doi: 10.1021/es903140c