Biocatalyzed Vinyl Laurate Transesterification in Natural Deep Eutectic Solvents

Waste and Biomass Valorization - Trang 1-12 - 2023
Attila Kovács1, Nathalie Janssens1, Miguel Mielants1, Iris Cornet2, Erik C. Neyts3, Pieter Billen1
1iPRACS research group, University of Antwerp, Antwerp, Belgium
2BioWAVE research group, University of Antwerp, Antwerp, Belgium
3PLASMANT research group, University of Antwerp, Wilrijk, Belgium

Tóm tắt

Natural deep eutectic solvents (NADES) represent a green alternative to conventional organic solvents as reaction medium, offering more benign properties. To efficiently design NADES for biocatalysis, a better understanding of their effect on these reactions is needed. We hypothesize that this effect can be described by separately considering (1) the solvent interactions with the substrates, (2) the solvent viscosities and (3) the enzyme stability in NADES. We investigated the effect of substrate solvation and viscosity on the reaction rate; and the stability of the enzyme in NADES. To this end, we monitored the conversion over time of the transesterification of vinyl laurate with 1-butanol by the lipase enzyme Candida antarctica B in NADES of different compounds and molar ratios. The initial reaction rate is higher in most NADES (varying between 1.14 and 15.07 $$\mu mol\;min^{-1}\;mg^{-1}$$ ) than in the reference n-hexane (4.0 $$\mu mol\;min^{-1}\;mg^{-1}$$ )), but no clear relationship between viscosity and initial reaction rate was found. The increased reaction rate is most likely related to the solvation of the substrate due to a change in the activation energy of the reaction or a change in the conformation of the substrate. The enzyme retained part of its activity after the first 2 h of reaction (on average 20 % of the substrate reacted in the 2-24 h period). Enzyme incubation in ethylene glycol-based NADES resulted in a reduced reaction rate (15.07 vs. 3.34 $$\mu mol\;min^{-1}\;mg^{-1}$$ ), but this may also be due to slow dissolution of the substrate. The effect of viscosity seems to be marginal next to the effect of solvation and possible enzyme-NADES interaction. The enzyme retains some of its activity during the 24-hour measurements, but the enzyme incubation experiments did not yield accurate, comparable values.

Tài liệu tham khảo

Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C.: Natural deep eutectic solvents - solvents for the 21st century. ACS Sustain. Chem. Eng. 2(5), 1063–1071 (2014). https://doi.org/10.1021/sc500096j Zhang, Q., Vigier, K.D.O., Royer, S., Jerome, F.: Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41(21), 7108 (2012). https://doi.org/10.1039/c2cs35178a Zhu, S., Li, H., Zhu, W., Jiang, W., Wang, C., Wu, P., Zhang, Q., Li, H.: Vibrational analysis and formation mechanism of typical deep eutectic solvents: an experimental and theoretical study. J. Mol. Gr. Model. 68, 158–175 (2016). https://doi.org/10.1016/j.jmgm.2016.05.003 Zhang, C., Jia, Y., Jing, Y., Wang, H., Hong, K.: Main chemical species and molecular structure of deep eutectic solvent studied by experiments with dft calculation: a case of choline chloride and magnesium chloride hexahydrate. J. Mol. Model. (2014). https://doi.org/10.1007/s00894-014-2374-6 Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K.: Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126(29), 9142–9147 (2004). https://doi.org/10.1021/ja048266j Kovács, A., Neyts, E.C., Cornet, I., Wijnants, M., Billen, P.: Modeling the physicochemical properties of natural deep eutectic solvents. ChemSusChem 13(15), 3789–3804 (2020). https://doi.org/10.1002/cssc.202000286 Martins, M.A.R., Pinho, S.P., Coutinho, J.A.P.: Insights into the nature of eutectic and deep eutectic mixtures. J. Solut. Chem. 48(7), 962–982 (2018). https://doi.org/10.1007/s10953-018-0793-1 Choi, Y.H., van Spronsen, J., Dai, Y., Verberne, M., Hollmann, F., Arends, I.W.C.E., Witkamp, G.-J., Verpoorte, R.: Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 156(4), 1701–1705 (2011). https://doi.org/10.1104/pp.111.178426 Hayyan, M., Mbous, Y.P., Looi, C.Y., Wong, W.F., Hayyan, A., Salleh, Z., Mohd-Ali, O.: Natural deep eutectic solvents: cytotoxic profile. SpringerPlus (2016). https://doi.org/10.1186/s40064-016-2575-9 Yang, Z.: Toxicity and Biodegradability of Deep Eutectic Solvents and Natural Deep Eutectic Solvents. Wiley (2019). https://doi.org/10.1002/9783527818488.ch3 Smith, E.L., Abbott, A.P., Ryder, K.S.: Deep eutectic solvents (dess) and their applications. Chem. Rev. 114(21), 11060–11082 (2014). https://doi.org/10.1021/cr300162p Panic, M., Bubalo, M.C., Redovnikovic, I.R.: Designing a biocatalytic process involving deep eutectic solvents. J. Chem. Technol. Biotechnol. 96(1), 14–30 (2020). https://doi.org/10.1002/jctb.6545 Clarke, C.J., Tu, W.-C., Levers, O., Bröhl, A., Hallett, J.P.: Green and sustainable solvents in chemical processes. Chem. Rev. 118(2), 747–800 (2018). https://doi.org/10.1021/acs.chemrev.7b00571 Abbott, A.P., Collins, J., Dalrymple, I., Harris, R.C., Mistry, R., Qiu, F., Scheirer, J., Wise, W.R.: Processing of electric arc furnace dust using deep eutectic solvents. Aust. J. Chem. 62(4), 341 (2009). https://doi.org/10.1071/ch08476 Dai, Y., van Spronsen, J., Witkamp, G.-J., Verpoorte, R., Choi, Y.H.: Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. J. Nat. Prod. 76(11), 2162–2173 (2013). https://doi.org/10.1021/np400051w Chen, Y.-L., Zhang, X., You, T.-T., Xu, F.: Deep eutectic solvents (DESs) for cellulose dissolution: a mini-review. Cellulose 26(1), 205–213 (2018). https://doi.org/10.1007/s10570-018-2130-7 Zhao, H., Baker, G.A., Holmes, S.: New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org. Biomol. Chem. 9(6), 1908 (2011). https://doi.org/10.1039/c0ob01011a Zhao, K.-H., Cai, Y.-Z., Lin, X.-S., Xiong, J., Halling, P., Yang, Z.: Enzymatic synthesis of glucose-based fatty acid esters in bisolvent systems containing ionic liquids or deep eutectic solvents. Molecules 21(10), 1294 (2016). https://doi.org/10.3390/molecules21101294 Misan, A., Nadpal, J., Stupar, A., Pojic, M., Mandic, A., Verpoorte, R., Choi, Y.H.: The perspectives of natural deep eutectic solvents in agri-food sector. Crit. Rev. Food Sci. Nutr. 60(15), 2564–2592 (2019). https://doi.org/10.1080/10408398.2019.1650717 Siebenhaller, S., Muhle-Goll, C., Luy, B., Kirschhöfer, F., Brenner-Weiss, G., Hiller, E., Günther, M., Rupp, S., Zibek, S., Syldatk, C.: Sustainable enzymatic synthesis of glycolipids in a deep eutectic solvent system. J. Mol. Catal. B: Enzym. 133, 281–287 (2016). https://doi.org/10.1016/j.molcatb.2017.01.015 Kleiner, B., Schörken, U.: Native lipase dissolved in hydrophilic green solvents: a versatile 2-phase reaction system for high yield ester synthesis. Eur. J. Lipid Sci. Technol. 117(2), 167–177 (2015). https://doi.org/10.1002/ejlt.201400494 Xu, P., Zheng, G.-W., Zong, M.-H., Li, N., Lou, W.-Y.: Recent progress on deep eutectic solvents in biocatalysis. Bioresour. Bioprocess. (2017). https://doi.org/10.1186/s40643-017-0165-5 Nian, B., Cao, C., Liu, Y.: How candida antarctica lipase b can be activated in natural deep eutectic solvents: experimental and molecular dynamics studies. J. Chem. Technol. Biotechnol. 95(1), 86–93 (2019). https://doi.org/10.1002/jctb.6209 Shehata, M., Unlu, A., Sezerman, U., Timucin, E.: Lipase and water in a deep eutectic solvent: Molecular dynamics and experimental studies of the effects of water-in-deep eutectic solvents on lipase stability. J. Phys. Chem. B 124(40), 8801–8810 (2020). https://doi.org/10.1021/acs.jpcb.0c07041 Kovacs, A., Yusupov, M., Cornet, I., Billen, P., Neyts, E.C.: Effect of natural deep eutectic solvents of non-eutectic compositions on enzyme stability. J. Mol. Liq. 366, 120180 (2022). https://doi.org/10.1016/j.molliq.2022.120180 Monhemi, H., Housaindokht, M.R., Moosavi-Movahedi, A.A., Bozorgmehr, M.R.: How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of candida antarctica lipase b in urea choline chloride deep eutectic solvent. Phys. Chem. Chem. Phys. 16(28), 14882 (2014). https://doi.org/10.1039/c4cp00503a Wu, B.-P., Wen, Q., Xu, H., Yang, Z.: Insights into the impact of deep eutectic solvents on horseradish peroxidase: activity, stability and structure. J. Mol. Catal. B: Enzym. 101, 101–107 (2014). https://doi.org/10.1016/j.molcatb.2014.01.001 Gorke, J.T., Srienc, F., Kazlauskas, R.J.: Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem. Commun. (2008). https://doi.org/10.1039/b716317g Durand, E., Lecomte, J., Baréa, B., Piombo, G., Dubreucq, E., Villeneuve, P.: Evaluation of deep eutectic solvents as new media for candida antarctica b lipase catalyzed reactions. Process Biochem. 47(12), 2081–2089 (2012). https://doi.org/10.1016/j.procbio.2012.07.027 Juneidi, I., Hayyan, M., Hashim, M.A., Hayyan, A.: Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction. Biochem. Eng. J. 117, 129–138 (2017). https://doi.org/10.1016/j.bej.2016.10.003 Goujard, L., Villeneuve, P., Barea, B., Lecomte, J., Pina, M., Claude, S., Petit, J.L., Ferré, E.: A spectrophotometric transesterification-based assay for lipases in organic solvent. Anal. Biochem. 385(1), 161–167 (2009). https://doi.org/10.1016/j.ab.2008.10.025 Elgharbawy, A.A.: Shedding Light on Lipase Stability in Natural Deep Eutectic Solvents. Chemical and Biochemical Engineering Quarterly 32(3), 359–370 (2018). https://doi.org/10.15255/CABEQ.2018.1335. Accessed 28 Sept 2023 Buzatu, A.R., Soler, M.A., Fortuna, S., Ozkilinc, O., Dreavă, D.M., Bîtcan, I., Badea, V., Giannozzi, P., Fogolari, F., Gardossi, L., Peter, F., Todea, A., Boeriu, C.G.: Reactive natural deep eutectic solvents increase selectivity and efficiency of lipase catalyzed esterification of carbohydrate polyols. Catal. Today 426, 114373 (2024). https://doi.org/10.1016/j.cattod.2023.114373. (Accessed 2023-10-03) Delavault, A., Opochenska, O., Laneque, L., Soergel, H., Muhle-Goll, C., Ochsenreither, K., Syldatk, C.: Lipase-Catalyzed Production of Sorbitol Laurate in a “2-in-1” Deep Eutectic System: Factors Affecting the Synthesis and Scalability. Molecules 26(9), 2759 (2021). https://doi.org/10.3390/molecules26092759. Accessed 03 Oct 2023 Arcens, D., Grau, E., Grelier, S., Cramail, H., Peruch, F.: Impact of fatty acid structure on CALB-catalyzed esterification of glucose. Eur. J. Lipid Sci. Technol. 122(4), 1900294 (2020). https://doi.org/10.1002/ejlt.201900294. (Accessed 2023-09-28) Yadav, A., Pandey, S.: Densities and viscosities of choline chloride \(+\) urea deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 k to 363.15 k. J. Chem. Eng. Data 59(7), 2221–2229 (2014). https://doi.org/10.1021/je5001796 Kim, S.H., Park, S., Yu, H., Kim, J.H., Kim, H.J., Yang, Y.-H., Kim, Y.H., Kim, K.J., Kan, E., Lee, S.H.: Effect of deep eutectic solvent mixtures on lipase activity and stability. J. Mol. Catal. B: Enzym. 128, 65–72 (2016). https://doi.org/10.1016/j.molcatb.2016.03.012. (Accessed 2023-09-28) Hollenbach, R., Bindereif, B., Van Der Schaaf, U.S., Ochsenreither, K., Syldatk, C.: Optimization of glycolipid synthesis in hydrophilic deep eutectic solvents. Front. Bioeng. Biotechnol. 8, 382 (2020). https://doi.org/10.3389/fbioe.2020.00382. (Accessed 2023-09-28) Semproli, R., Chanquia, S.N., Bittner, J.P., Müller, S., Domínguez De María, P., Kara, S., Ubiali, D.: Deep Eutectic Solvents for the Enzymatic Synthesis of Sugar Esters: A Generalizable Strategy? ACS Sustainable Chemistry & Engineering 11(15), 5926–5936 (2023). https://doi.org/10.1021/acssuschemeng.2c07607. Accessed 28 Sept 2023 Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., Sherman, W.: Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 6(5), 1509–1519 (2010). https://doi.org/10.1021/ct900587b Abbas, U.L., Qiao, Q., Nguyen, M.T., Shi, J., Shao, Q.: Molecular dynamics simulations of heterogeneous hydrogen bond environment in hydrophobic deep eutectic solvents. AIChE J. (2021). https://doi.org/10.1002/aic.17382