Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae
Tóm tắt
Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.
Từ khóa
Tài liệu tham khảo
Yamagushi, 1997, Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review, J. Appl. Phycol., 8, 487, 10.1007/BF02186327
Liang, 2004, Current microalgal health food R & D activities in China, Hydrobiologia, 512, 45, 10.1023/B:HYDR.0000020366.65760.98
Vilchez, 1997, Microalgae-Mediated chemicals production and wastes removal, Enzyme Microb. Technol., 20, 562, 10.1016/S0141-0229(96)00208-6
Apt, 1999, Commercial developments in microalgal biotechnology, J. Phycol., 35, 215, 10.1046/j.1529-8817.1999.3520215.x
2000, The role of microalgae in aquaculture: situation and trends, J. Appl. Phycol., 12, 527, 10.1023/A:1008106304417
Borowitzka, 1997, Microalgae for aquaculture: Opportunities and constraints, J. Appl. Phycol., 9, 393, 10.1023/A:1007921728300
Pulz, 2004, Valuable products from biotechnology of microalgae, Appl. Microbiol. Biotechnol., 65, 635, 10.1007/s00253-004-1647-x
Fujitani, 2001, Inhibitory effects of microalgae on activation of hyaluronidase, J. Appl. Phycol., 13, 489, 10.1023/A:1012592620347
Blinkova, 2001, Biological activity of Spirulina (in Russian), Zhur. Mikrobiol. Epidemiol. Immunobiol., 5, 114
Rasmussen, 2007, Marine biotechnology for production of food ingredients, Adv. Food Nutr. Res., 52, 237, 10.1016/S1043-4526(06)52005-4
Raposo, 2011, Chlorella vulgaris as soil amendment: Influence of encapsulation and enrichment with rhizobacteria, Int. J. Agric. Biol., 13, 719
Raposo, 2010, On the utilization of microalgae for brewery effluent treatment and possible applications of the produced biomass, J. Inst. Brew., 116, 285, 10.1002/j.2050-0416.2010.tb00433.x
Guzman, 2001, Anti-Inflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum, Phytother. Res., 15, 224, 10.1002/ptr.715
Borowitzka, 1995, Microalgae as source of pharmaceuticals and other biologically active compounds, J. Appl. Phycol., 7, 3, 10.1007/BF00003544
Masjuk, N.P. (1973). Morphology, Taxonomy, Ecology, Geographical Distribution and Utilization of Dunaliella (in Russian), Naukowa.
Findlay, 1984, Antibacterial constituents of the diatom Navicula delognei, J. Nat. Prod., 47, 815, 10.1021/np50035a010
Villar, 1992, Effects of Skeletonema costatum extracts on the central nervous system, Planta Med., 58, 398, 10.1055/s-2006-961500
Laguna, 1993, Effects of Chlorella stigmatophora extracts on the central nervous system, Planta Med., 59, 125, 10.1055/s-2006-959626
Villar, 1994, Effects of aqueous extracts of six marine microalgae on smooth muscle contraction in the rat duodenum and vas deferens, Planta Med., 60, 521, 10.1055/s-2006-959563
Fleurentin, J. (1991). Ethnopharmacologie: Sources, Methodes, Objectifs: Actes du 1er Colloque Européen d’Ethnopharmacologie, ORSTOM Editions.
Yoon, 2006, Defining the major lineages of the red algae (Rhodophyta), J. Phycol., 42, 482, 10.1111/j.1529-8817.2006.00210.x
Staats, 1999, Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum, Eur. J. Phycol., 34, 161, 10.1080/09670269910001736212
Pletikapic, 2011, AFM imaging of extracellular polymer release by marine diatom Cylindrotheca closterium (Ehrenberg) Reiman & JC Lewin, J. Mol. Recogn., 24, 436, 10.1002/jmr.1114
Ascencio, 2007, Effects of fertilizer-based culture media on the production of exocellular polysaccharides and cellular superoxide dismutase by Phaeodactylum tricornutum (Bohlin), J. Appl. Phycol., 19, 33, 10.1007/s10811-006-9108-9
Chen, 2011, Effects of engineered nanoparticles on the assembly of exopolymeric substances from phytoplankton, PLoS One, 6, 1
Lebeau, 1999, Artificial cell-immobilization: A model simulating immobilization in natural environments?, J. Appl. Phycol., 11, 263, 10.1023/A:1008144307248
Penna, 1999, Influence of nutrient ratios on the in vitro extracellular polysaccharide production by marine diatoms from Adriatic Sea, J. Plankton Res., 21, 1681, 10.1093/plankt/21.9.1681
Guzman, 2003, Anti-Inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum, Phytother. Res., 17, 665, 10.1002/ptr.1227
Yingying, 2009, The optimal growth conditions for the biomass production of Isochrysis galbana and the effects that phosphorus, Zn2+, CO2, and light intensity have on the biochemical composition of Isochrysis galbana and the activity of extracellular CA, Biotechnol. Bioprocess Eng., 14, 225, 10.1007/s12257-008-0013-8
Ascencio, 2000, Anti-Adhesive activity of sulphated exopolysaccharides of microalgae on attachment of the red sore disease-associated bacteria and Helicobacter pylori to tissue culture cells, Lett. Appl. Microbiol., 30, 473, 10.1046/j.1472-765x.2000.00751.x
Geresh, 1991, The extracellular polysaccharides of the red microalgae: Chemistry and rheology, Bioresour. Technol., 38, 195, 10.1016/0960-8524(91)90154-C
Dubinsky, O., Barak, Z., Geresh, S., and Arad, S.M. (1990). Recent Advances in Algal Biotechnology, the 5th International Conference of the Society of Applied Algology, Office of Naval Research.
Stadler, T., Mollion, J., Verdus, M.C., Karamanos, Y., Morvan, H., and Christiaen, D. (1988). Algal Biotechnology, Elsevier Applied Science.
Garcia, D., Morales, E., Dominguez, A., and Fábregas, J. (1996). Communicaciones del III Congreso Ibérico de Biotecnología—Biotec’96, Universidad de Valladolid.
Kieras, J.H. Study of the Extracellular Polysaccharide of Porphyridium cruentum. Ph.D. Thesis, University of Chicago, Chicago, IL, USA, 1972.
Radonic, 2010, Anionic polysaccharides from phototrophic microorganisms exhibit antiviral activities to Vaccinia virus, J. Antivir. Antiretrovir., 2, 51, 10.4172/jaa.1000023
Hasui, 1995, In vitro antiviral activities of sulphated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped virus, Int. J. Biol. Macromol., 17, 293, 10.1016/0141-8130(95)98157-T
Yim, 2007, Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03, Bioresour. Technol., 98, 361, 10.1016/j.biortech.2005.12.021
Li, 2001, Chemical characterization of the released polysaccharides from the cyanobacterium Aphanothece halophytica GR02, J. Appl. Phycol., 13, 71, 10.1023/A:1008109501066
Hayashi, 1996, Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis, J. Nat. Prod., 59, 83, 10.1021/np960017o
2005, Antiviral activities of polysaccharides from natural sources, Studies in Natural Products Chemistry, 30, 393, 10.1016/S1572-5995(05)80038-9
Senni, 2011, Marine polysaccharides: A source of bioactive molecules for cell therapy and tissue engineering, Mar. Drugs, 9, 1664, 10.3390/md9091664
Hayashi, 1996, A natural sulphated polysaccharide, calcium spirulan, isolated from Spirulina platensis: In vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus, AIDS Res. Human Retrovir., 12, 1463, 10.1089/aid.1996.12.1463
Nieves, 2002, Antiviral activity of Spirulina maxima against herpes simplex virus type 2, Antivir. Res., 56, 279, 10.1016/S0166-3542(02)00132-8
Huleihel, 2002, Activity of Porphyridium sp. polysaccharide against Herpes simplex viruses in vitro and in vivo, J. Biochem. Biophys. Methods, 50, 189, 10.1016/S0165-022X(01)00186-5
Huleihel, 2001, Antiviral effect of the red microalgal polysaccharides on Herpes simplex and Varidella zoster viruses, J. Appl. Phycol., 13, 127, 10.1023/A:1011178225912
Talyshinsky, 2002, Antiviral activity of red microalgal polysaccharides against retroviruses, Cancer Cell Int., 2, 8, 10.1186/1475-2867-2-8
Huang, 2005, Studies on separation of extracellular polysaccharide from Porphyridium cruentum and its anti-HBV activity in vitro (in Chinese), Chin. J. Mar. Drugs, 24, 18
Fabregas, 1999, In vitro inhibition of the replication of viral haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae, Antivir. Res., 44, 67, 10.1016/S0166-3542(99)00049-2
Raposo, M.F.J., Morais, A.M.M.B., and Morais, R.M.S.C. (2012). Antibacterial and antiviral activities of the exopolysaccharide from Porphyridium cruentum. Z. Naturforsch. C J. Biosci., submitted.
Vieira, V.V., and Morais, R.M.S.C. (2008). Composições constituídas por polissacarídeos com actividade anti-viral e anti-adesão bacteriana, respectivas formulações, processo de elaboração das mesmas e suas utilizações. (38122.08), Portugal Patent.
Yim, 2004, Antiviral effects of sulphated polysaccharide from the marine microalga Gyrodinium impudicum strain KG03, Mar. Biotechnol., 6, 17, 10.1007/s10126-003-0002-z
Dvir, 2000, Soluble polysaccharide of red microalga Porphyridium sp. alters intestinal morphology and reduces serum cholesterol in rats, Br. J. Nutr., 84, 469, 10.1017/S000711450000177X
Dvir, 2009, Hycholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats, Nutrients, 1, 156, 10.3390/nu1020156
Sun, L. Preparation of Polysaccharides from Porphyridium cruentum and Their Biological Activities. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2010.
Chen, 2010, Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata, World J. Microbiol. Biotechnol., 26, 833, 10.1007/s11274-009-0240-y
Bergman, 2005, Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp, J. Appl. Phycol., 17, 215, 10.1007/s10811-005-0679-7
Sun, 2009, Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities, Int. J. Biol. Macromol., 45, 42, 10.1016/j.ijbiomac.2009.03.013
Cohen, Z. (1999). Chemicals from Microalgae, Taylor & Francis.
Ginzberg, 2000, Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol levels and modified fatty acids composition in egg yolk, J. Appl. Phycol., 12, 325, 10.1023/A:1008102622276
Huang, 2006, Reduction in the blood glucose level of exopolysaccharide of Porphyridium cruentum in alloxan-induced diabetic mice (in Chinese), J. Fujian Norm. Univ., 22, 77
Matsui, 2003, Sulfated polysaccharides from red microalgae anti-inflammatory properties in vitro and in vivo, Appl. Biochem. Biotechnol., 104, 13, 10.1385/ABAB:104:1:13
Arad, S.M., and Atar, D. (2007). Viscosupplementation with algal polysaccharides in the treatment of arthritis. (WO/2007/066340), WIPO Patent.
Geresh, 2002, Sulfation of extracellular polysaccharides of red microalga: Preparation, characterization, properties, J. Biochem. Biophys. Methods, 50, 179, 10.1016/S0165-022X(01)00185-3
Gardeva, 2009, Cancer protective action of polysaccharide derived from microalga Porphyridium cruentum—A biological background, Biotechnol. Biotechnol. Equip., 23, 783, 10.1080/13102818.2009.10818540
Shopen-Katz, O., Ling, E., Himelfarb, Y., Lamprecht, S.A., Arad, S.M., and Shany, S. (2000, January 24–27). The effect of Porphyridium sp., biomass and of its polysaccharide in prevention and inhibition of human colon cancer. Proceedings of the Era of Biotechnology, Beer-Sheva, Israel.
Dade, 1990, Effects of bacterial exopolymer adhesion on the entrainment of sand, Geomicrobiol. J., 8, 1, 10.1080/01490459009377874
Arad, 2006, Superior biolubricant from a species of red microalga, Langmuir, 2, 7313, 10.1021/la060600x
Lupescu, 1991, Structure of some sulfated sugars isolated after acid hydrolysis of the extracellular polysaccharide of Porphyridium sp. unicellular red alga, Carbohydr. Res., 210, 349, 10.1016/0008-6215(91)80136-B
Gasljevic, 2008, Drag-Reducing polysaccharides from marine microalgae: Species productivity and drag reduction effectiveness, J. Appl. Phycol., 20, 299, 10.1007/s10811-007-9250-z
Ramus, 1989, Drag-Reducing properties of microalgal exopolymers, Biotechnol. Bioeng., 33, 550, 10.1002/bit.260330506
Geresh, 2002, Characterization of the extracellular polysaccharide of Porphyridium sp.: Molecular weight determination and rheological properties, Carbohydr. Polym., 50, 183, 10.1016/S0144-8617(02)00019-X
You, 2004, Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum, Biochem. Eng. J., 19, 251, 10.1016/j.bej.2004.02.004
Geresh, 1990, Structure of 3-O-(α-D-glucopyranosyluronic acid)-L-galactopyronase, an aldobiuronic acid isolated from polysaccharide of various unicellular red algae, Carbohydr. Res., 208, 301, 10.1016/0008-6215(90)80116-K
Eteshola, 1998, Red microalga exopolysaccharides: 2. Study of the rheology, morphology and thermal gelation of aqueous preparations, Acta Polym., 49, 549, 10.1002/(SICI)1521-4044(199810)49:10/11<549::AID-APOL549>3.0.CO;2-T
Roden, 1977, The covalent linkage of protein to carbohydrate in the extracellular protein-polysaccharide from the red alga Porphyridium cruentum, Biochemistry, 165, 1, 10.1042/bj1650001
Shrestha, R., Bar-Zvi, D., and Arad, S.M. (1995, January 25–29). Non-Covalently Bound Cell-Wall Proteins of the Red Microalga Porphyridium sp. Proceedings of7th Cell-Wall Meeting, Santiago, Spain.
Shrestha, 2004, A glycoprotein noncovalently associated with cell-wall polysaccharide of the red microalga Porphyridium sp. (Rhodophyta), J. Phycol., 40, 568, 10.1111/j.1529-8817.2004.02177.x
Jeanloz, R.W. (1979). Glycoconjugate Research, Academic Press.
Arad, 1985, The potential of production of sulphated polysaccharides from Porphyridium, Plant Soil, 89, 117, 10.1007/BF02182238
Badel, 2011, A new tool to detect high viscous exopolymers from microalgae, J. Ind. Microbiol. Biotechnol., 38, 319, 10.1007/s10295-010-0775-9
Lee, 2000, Structural analysis of calcium spirulan (Ca-SP)-derived oligosaccharides using electrospray inonization mass spectrometry, J. Nat. Prod., 63, 136, 10.1021/np990348b
A Structural View of Rheology. Available online:http://www.vilastic.com/tech4.html.
Geresh, 2000, Chemical modifications of biopolymers: Quaternization of the extracellular polysaccharide of the red microalga Porphyridium sp, Carbohydr. Polym., 63, 75, 10.1016/S0144-8617(99)00194-0
Ginzberg, 2008, Effect of drying on the biological activities of a red microalga polysaccharide, Biotechnol. Bioeng., 99, 411, 10.1002/bit.21573
Proksch, 1993, Barrier function regulates epidermal lipid and DNA synthesis, Br. J. Dermatol., 128, 473, 10.1111/j.1365-2133.1993.tb00222.x
Kim, 2012, In vitro inhibition of influenza A virus infection by marine microalga-derived sulphated polysaccharide p-KG03, Antivir. Res., 93, 253, 10.1016/j.antiviral.2011.12.006
Xing, 2005, Antioxidant activity of differently regioselective chitosan sulfates in vitro, Bioorg. Med. Chem., 13, 1387, 10.1016/j.bmc.2004.11.002
Leiro, 2007, Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh, Int. Immunopharmacol., 7, 879, 10.1016/j.intimp.2007.02.007
Bae, 2006, Activation of murine peritoneal macrophages by sulphated exopolysaccharide from marine microalga Gyrodinium impudicum (strain KG03): Involvement of the NF-kappa B and JNK pathway, Int. Immunopharmacol., 6, 473, 10.1016/j.intimp.2005.09.009
Namikoshi, 1996, Bioactive compounds produced by cyanobacteria, J. Int. Microbiol. Biotechnol., 17, 373, 10.1007/BF01574768
Yim, 2005, Novel sulfated polysaccharide derived from red-tide microalga Gyrodinium impudicum strain KG03 with immunostimulating activity in vivo, Mar. Biotechnol., 7, 331, 10.1007/s10126-004-0404-6
Morais, 2010, Preparation of nanofibers containing the microalga Spirulina (Arthrospira), Bioresour. Technol., 101, 2872, 10.1016/j.biortech.2009.11.059
Jiao, 2011, Chemical structures and bioactives of sulphated polysaccharides from marine algae, Mar. Drugs, 9, 196, 10.3390/md9020196
Cherbut, C., Barry, J.L., Lairon, D., and Durand, M. (1995). Dietary Fiber, Mechanisms of Action in Human Physiology and Metabolism, John Libbey Eurotext.
Glore, 1994, Soluble fiber in serum lipids: A literature review, J. Am. Diet. Assoc., 94, 425, 10.1016/0002-8223(94)90099-X
Ofek, 1978, Surface sugars recognition in bacterial adherence, Trends Biochem. Sci., 3, 159, 10.1016/S0968-0004(78)90294-3
Ascencio, 1993, Affinity of the gastric pathogen Helicobacter pylori for the N-sulphated glycosaminoglycan heparin sulphate, J. Med. Microbiol., 38, 240, 10.1099/00222615-38-4-240
Wijesekara, 2011, Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae, Carbohydr. Polym., 84, 14, 10.1016/j.carbpol.2010.10.062
Pereira, 2002, A 2-sulfated, 3-linked alpha-L-galactan is an anticoagulant polysaccharide, Carbohydr. Res., 337, 2231, 10.1016/S0008-6215(02)00215-X
Arad, 2003, Novel lubricants from red microalgae: Interplay between genes and products, J. Biomed. (Isr.), 1, 32
Tseng, 2001, Algal biotechnology industries and research activities in China, J. Appl. Phycol., 13, 375, 10.1023/A:1017972812576
Gutteridge, J.M.C., and Halliwell, B. (1994). Antioxidants in Nutrition, Health, and Disease, Oxford University Press.
Wetherbee, 1998, The first kiss: Establishment and control of initial adhesion by raphid diatoms, J. Phycol., 34, 9, 10.1046/j.1529-8817.1998.340009.x
Paterson, 1989, Short-Term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms, Limnol. Oceanogr., 34, 223, 10.4319/lo.1989.34.1.0223