Bioaccumulation of silver and its effects on biochemical parameters and histological alterations in an Indian major carp Labeo rohita

Environmental Chemistry and Ecotoxicology - Tập 3 - Trang 51-58 - 2021
Chellappan Shobana1,2, Basuvannan Rangasamy1, Devan Hemalatha1,3, Mathan Ramesh1
1Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
2Department of Zoology, Kongunadu Arts And Science College (Autonomous), Coimbatore 641 029, Tamil Nadu, India
3Department of Zoology, PSG College of Arts And Science, Coimbatore-641 014, Tamil Nadu, India

Tài liệu tham khảo

Huang, 2019, Distribution, contents and health risk assessment of heavy metalloids in fish from different water bodies in Northeast China, RSC Adv., 9, 33130, 10.1039/C9RA05227E Bing, 2016, Historical trends of anthropogenic metals in eastern Tibetan plateau as reconstructed from alpine lake sediments over the last century, Chemosphere., 148, 211, 10.1016/j.chemosphere.2016.01.042 Martin, 2015, Impact of 70 years urban growth associated with heavy metal pollution, Environ. Pollut., 196, 156, 10.1016/j.envpol.2014.10.014 Ale, 2018, Nanosilver toxicity in gills of a neotropical fish: metal accumulation, oxidative stress, histopathology and other physiological effects, Ecotoxicol. Environ. Saf., 148, 976, 10.1016/j.ecoenv.2017.11.072 Choi, 2008, The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth, Water Res., 42, 3066, 10.1016/j.watres.2008.02.021 Seltenrich, 2014, Nanosilver: weighing the risks and benefits, Environ. Health Perspect., 121, 220 Xiang, 2020, Proteomic profiling reveals the differential toxic responses of gills of common carp exposed to nanosilver and silver nitrate, J. Hazard. Mater., 122562 Sayed, 2017, Developmental toxicity and DNA damaging properties of silver nanoparticles in the catfish (Clarias gariepinus), Mutat. Res. Genet. Toxicol. Environ. Mutagen., 822, 34, 10.1016/j.mrgentox.2017.07.002 Chawla, 2018, Identifying challenges in assessing risks of exposures of silver nanoparticles, Expos. Health, 10, 61, 10.1007/s12403-017-0245-y Blaser, 2008, Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles, Sci. Total Environ., 390, 396, 10.1016/j.scitotenv.2007.10.010 Luoma, 2008 Lavanya, 2011, Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic, Chemosphere., 82, 977, 10.1016/j.chemosphere.2010.10.071 Bilberg, 2010, Silver nanoparticles and silver nitrate causes respiratory stress in Eurasian perch (Perca fluviatilis), Aquat. Toxicol., 96, 159, 10.1016/j.aquatox.2009.10.019 Xiang, 2020, Proteomic profiling reveals the differential toxic responses of gills of common carp exposed to nano silver and silver nitrate, J. Hazard. Mater., 394, 122562, 10.1016/j.jhazmat.2020.122562 Kataoka, 2018, Comparative toxicities of silver nitrate, silver nanocolloids, and silver chloro-complexes to Japanese medaka embryos, and later effects on the population growth rate, Environ. Pollut., 233, 1155, 10.1016/j.envpol.2017.10.028 Ale, 2018, Integrative assessment of silver nanoparticles toxicity in Prochilodus lineatus fish, Ecol. Indic., 93, 1190, 10.1016/j.ecolind.2018.06.023 Rangasamy, 2018, Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen, Chemosphere., 213, 423, 10.1016/j.chemosphere.2018.09.013 Yousafzai, 2017, Bioaccumulation of some heavy metals: analysis and comparison of Cyprinus carpio and Labeo rohita from Sardaryab, Khyber Pakhtunkhwa, Biomed Res. Int., 5 Ariyaee, 2015, Comparison of metal concentrations in fish species from the Zabol Chahnimeh reservoirs, Iran, Bull. Environ. Contam. Toxicol., 94, 715, 10.1007/s00128-015-1529-1 Umamaheswari, 2019, Chronic amoxicillin exposure affects Labeo rohita: assessment of hematological, ionic compounds, biochemical, and enzymological activities, Heliyon., 5, 10.1016/j.heliyon.2019.e01434 Atli, 2011, Metals (Ag1, Cd21, Cr61) affect ATPase activity in gill, kidney, and muscle of freshwater fish Oreochromis niloticus following acute and chronic exposures, Environ. Toxicol., 20, 1861 Ajima, 2017, Assessment of mutagenic, hematological and oxidative stress biomarkers in liver of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) in response to sublethal verapamil exposure, Drug Chem. Toxicol., 40, 286, 10.1080/01480545.2016.1219914 Agrahari, 2008, Inhibition of Na+ K+-ATPase in different tissues of freshwater fish Channa punctatus (blotch) exposed to monocrotophos, Pestic. Biochem. Physiol., 92, 57, 10.1016/j.pestbp.2008.06.003 Mayer, 1992, Physiological and nonspecific biomarkers, 5 Remya, 2015, Iron oxide nanoparticles to an Indian major carp, Labeo rohita: impacts on hematology, iono regulation and gill Na+/K+ ATPase activity, Journal of King Saud University-Science, 27, 151, 10.1016/j.jksus.2014.11.002 Kavitha, 2010, Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla, Food Chem. Toxicol., 48, 2848, 10.1016/j.fct.2010.07.017 Wolf, 2018, A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models, Aquat. Toxicol., 197, 60, 10.1016/j.aquatox.2018.01.013 APHA (American Public Health Association), 2005 Finney, 1978 Shaw, 2012, Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation, Aquat. Toxicol., 90, 116 Shiosaka, 1971, Mechanism of phosphorylation of thymidine by the culture filtrates of Clostridium perfringnes and rat liver extract, Biochem. Biophys. Acta., 246, 171 Trinder, 1951, A rapid method for the determination of sodium in serum, Analyst, 76, 596, 10.1039/an9517600596 Maruna, 1958, Colorimetric determination of sodium in human serum and plasma, Clin. Chim. Acta, 2, 581, 10.1016/0009-8981(57)90064-5 Schales, 1941, A simple and accurate method for the determination of chloride in biological fluids, Biol. Chem., 877 Schoenfeld, 1964, A colorimetric method for determination of serum chloride, Clin. Chem., 10, 533, 10.1093/clinchem/10.6.533 Terri, 1958, Determination of potassium by using sodium tetraphenylboron, Am. J. Clin. Pathol., 29, 86 Sunderman, 1959, The rapid colorimetric estimation of potassium, American J. Clin. Pathol., 29, 1 Cooper, 1970, 159, 10.1016/B978-0-12-609106-9.50021-X Lowry, 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265, 10.1016/S0021-9258(19)52451-6 Sathya, 2012, Acute and sublethal effects in an Indian major carp Cirrhinus mrigala exposed to silver nitrate: gill Na+/K+-ATPase, plasma electrolytes and biochemical alterations, Fish Shell fish Immunol., 32, 862, 10.1016/j.fsi.2012.02.014 Tarzwell, 1971, Measurement of pollution effects on living organisms bioassays to determine allowable waste concentrations in the aquatic environment, J. Roy- Soc. Lond. B., 177, 279, 10.1098/rspb.1971.0029 Hogstrand, 1998, Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish: implications for water quality criteria, Environ. Toxicol. Chem., 17, 547, 10.1002/etc.5620170405 Dolezelova, 2008, Comparison of the sensitivity of Danio rerio and Poecilia reticulate to silver nitrate in short-term tests, Interdis. Toxicol., 1, 200, 10.2478/v10102-010-0040-0 Grosell, 2000, A nose-to-nose comparison of the physiological effects of exposure to ionic silver versus silver chloride in the European eel (Anguilla anguilla) and the rainbow trout (Oncorhynchus mykiss), Aquat. Toxicol., 48, 327, 10.1016/S0166-445X(99)00029-6 LeBlanc, 1984, The influence of speciation on the toxicity of silver to fathead minnow (Pimephales promelas), Environ. Toxicol. Chem., 3, 7, 10.1002/etc.5620030106 U.S. Environmental Protection Agency, 1991 A.G. Heath, 1995, 384 Sayed, 2020, Histopathological and histochemical effects of silver nanoparticles on the gills and muscles of African catfish (Clarias garepinus), Scientific African, 7, e00230, 10.1016/j.sciaf.2019.e00230 Cambier, 2018, Fate and effects of silver nanoparticles on early life-stage development of zebra fish (Danio rerio) in comparison to silver nitrate, Sci. Total Environ., 610–611, 972, 10.1016/j.scitotenv.2017.08.115 Vali, 2020, The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses, Ecotoxicol. Environ. Saf., 194, 110353, 10.1016/j.ecoenv.2020.110353 Khosravi-Katuli, 2018, Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): accumulation, physiology and histopathology, J. Hazard. Mater., 359, 373, 10.1016/j.jhazmat.2018.07.064 Lankveld, 2010, A. Troost–de Jong, C. Noorlander, J. van Eijkeren, R. Geertsma, W. De Jong, the kinetics of the tissue distribution of silver nanoparticles of different sizes, Biomaterials, 31, 8350, 10.1016/j.biomaterials.2010.07.045 Afifi, 2016, Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii, Saudi J. Biol. Sci., 23, 754, 10.1016/j.sjbs.2016.06.008 McCormick, 2009, Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon, J. Experi. Biol., 212, 3994, 10.1242/jeb.037275 Kimellberg, 1974, Effect of phospholipids acetyl chain fluidity phase transition and cholesterol in (Na++ K+), stimulated adenosine triphosphatase, J. Biol. Chem., 249, 1071, 10.1016/S0021-9258(19)42943-8 Wood, 1996, The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+, Aquat. Toxicol., 35, 93, 10.1016/0166-445X(96)00003-3 Ay, 1999, Copper and lead accumulation in tissues of a freshwater fish Tilapia zillii and its effects on the branchial Na+/K+-ATPase activity, Bull. Environ. Contam. Toxicol., 52862, 160, 10.1007/s001289900855 Fabrega, 2011, Silver nanoparticles: behaviour and effects in the aquatic environment, Environ. Internat., 37, 517, 10.1016/j.envint.2010.10.012 Suvetha, 2010, Influence of cypermethrin toxicity on ionic regulation and gill Na+, K+-ATPase activity of a freshwater teleost fish Cyprinus carpio, Environ. Toxicol. Pharmacol., 29, 44, 10.1016/j.etap.2009.09.005 McCormick, 1993, Methods for nonlethal gill biopsy and measurement of Na+, K+ATPase activity, Canadian J. Fisher. Aquat. Sci., 50, 656, 10.1139/f93-075 Vutukuru, 2003, Chromium induced alterations in some biochemical profiles of the Indian major carp, Labeo rohita (Hamilton), Bull. Environ. Contam. Toxicol., 70, 118, 10.1007/s00128-002-0164-9 Farmen, 2012, Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles, Aquat. Toxicol., 108, 78, 10.1016/j.aquatox.2011.07.007 Webb, 1998, Physiological analysis of the stress response associated with acute silver nitrate exposure in freshwater rainbow trout (Oncorhynchus mykiss), Environ. Toxicol. Chem., 17, 579, 10.1002/etc.5620170408 Naguib, 2020, Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; biochemical, histopathological, and histochemical studies, Toxicol. Rep., 7, 133, 10.1016/j.toxrep.2020.01.002 Fonseca, 2016, From catchment to fish: impact of anthropogenic pressures on gill histopathology, Sci. Total Environ., 550, 972, 10.1016/j.scitotenv.2016.01.199 Sayadi, 2020, Exposure effects of iron oxide nanoparticles and iron salts in blackfish (Capoeta fusca): Acute toxicity, bioaccumulation, depuration, and tissue histopathology, Chemosphere, 247, 125900, 10.1016/j.chemosphere.2020.125900 Capaldo, 2019, Changes in the gills of the European eel (Anguilla anguilla) after chronic exposure to environmental cocaine concentration, Ecotoxicol. Environ. Saf., 169, 112, 10.1016/j.ecoenv.2018.11.010 Hinton, 2001, Toxic responses of the liver, 248 Wolf, 2018, A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models, Aquat. Toxicol., 197, 60, 10.1016/j.aquatox.2018.01.013