Bioaccumulation of silver and its effects on biochemical parameters and histological alterations in an Indian major carp Labeo rohita
Tài liệu tham khảo
Huang, 2019, Distribution, contents and health risk assessment of heavy metalloids in fish from different water bodies in Northeast China, RSC Adv., 9, 33130, 10.1039/C9RA05227E
Bing, 2016, Historical trends of anthropogenic metals in eastern Tibetan plateau as reconstructed from alpine lake sediments over the last century, Chemosphere., 148, 211, 10.1016/j.chemosphere.2016.01.042
Martin, 2015, Impact of 70 years urban growth associated with heavy metal pollution, Environ. Pollut., 196, 156, 10.1016/j.envpol.2014.10.014
Ale, 2018, Nanosilver toxicity in gills of a neotropical fish: metal accumulation, oxidative stress, histopathology and other physiological effects, Ecotoxicol. Environ. Saf., 148, 976, 10.1016/j.ecoenv.2017.11.072
Choi, 2008, The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth, Water Res., 42, 3066, 10.1016/j.watres.2008.02.021
Seltenrich, 2014, Nanosilver: weighing the risks and benefits, Environ. Health Perspect., 121, 220
Xiang, 2020, Proteomic profiling reveals the differential toxic responses of gills of common carp exposed to nanosilver and silver nitrate, J. Hazard. Mater., 122562
Sayed, 2017, Developmental toxicity and DNA damaging properties of silver nanoparticles in the catfish (Clarias gariepinus), Mutat. Res. Genet. Toxicol. Environ. Mutagen., 822, 34, 10.1016/j.mrgentox.2017.07.002
Chawla, 2018, Identifying challenges in assessing risks of exposures of silver nanoparticles, Expos. Health, 10, 61, 10.1007/s12403-017-0245-y
Blaser, 2008, Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles, Sci. Total Environ., 390, 396, 10.1016/j.scitotenv.2007.10.010
Luoma, 2008
Lavanya, 2011, Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic, Chemosphere., 82, 977, 10.1016/j.chemosphere.2010.10.071
Bilberg, 2010, Silver nanoparticles and silver nitrate causes respiratory stress in Eurasian perch (Perca fluviatilis), Aquat. Toxicol., 96, 159, 10.1016/j.aquatox.2009.10.019
Xiang, 2020, Proteomic profiling reveals the differential toxic responses of gills of common carp exposed to nano silver and silver nitrate, J. Hazard. Mater., 394, 122562, 10.1016/j.jhazmat.2020.122562
Kataoka, 2018, Comparative toxicities of silver nitrate, silver nanocolloids, and silver chloro-complexes to Japanese medaka embryos, and later effects on the population growth rate, Environ. Pollut., 233, 1155, 10.1016/j.envpol.2017.10.028
Ale, 2018, Integrative assessment of silver nanoparticles toxicity in Prochilodus lineatus fish, Ecol. Indic., 93, 1190, 10.1016/j.ecolind.2018.06.023
Rangasamy, 2018, Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen, Chemosphere., 213, 423, 10.1016/j.chemosphere.2018.09.013
Yousafzai, 2017, Bioaccumulation of some heavy metals: analysis and comparison of Cyprinus carpio and Labeo rohita from Sardaryab, Khyber Pakhtunkhwa, Biomed Res. Int., 5
Ariyaee, 2015, Comparison of metal concentrations in fish species from the Zabol Chahnimeh reservoirs, Iran, Bull. Environ. Contam. Toxicol., 94, 715, 10.1007/s00128-015-1529-1
Umamaheswari, 2019, Chronic amoxicillin exposure affects Labeo rohita: assessment of hematological, ionic compounds, biochemical, and enzymological activities, Heliyon., 5, 10.1016/j.heliyon.2019.e01434
Atli, 2011, Metals (Ag1, Cd21, Cr61) affect ATPase activity in gill, kidney, and muscle of freshwater fish Oreochromis niloticus following acute and chronic exposures, Environ. Toxicol., 20, 1861
Ajima, 2017, Assessment of mutagenic, hematological and oxidative stress biomarkers in liver of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) in response to sublethal verapamil exposure, Drug Chem. Toxicol., 40, 286, 10.1080/01480545.2016.1219914
Agrahari, 2008, Inhibition of Na+ K+-ATPase in different tissues of freshwater fish Channa punctatus (blotch) exposed to monocrotophos, Pestic. Biochem. Physiol., 92, 57, 10.1016/j.pestbp.2008.06.003
Mayer, 1992, Physiological and nonspecific biomarkers, 5
Remya, 2015, Iron oxide nanoparticles to an Indian major carp, Labeo rohita: impacts on hematology, iono regulation and gill Na+/K+ ATPase activity, Journal of King Saud University-Science, 27, 151, 10.1016/j.jksus.2014.11.002
Kavitha, 2010, Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla, Food Chem. Toxicol., 48, 2848, 10.1016/j.fct.2010.07.017
Wolf, 2018, A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models, Aquat. Toxicol., 197, 60, 10.1016/j.aquatox.2018.01.013
APHA (American Public Health Association), 2005
Finney, 1978
Shaw, 2012, Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation, Aquat. Toxicol., 90, 116
Shiosaka, 1971, Mechanism of phosphorylation of thymidine by the culture filtrates of Clostridium perfringnes and rat liver extract, Biochem. Biophys. Acta., 246, 171
Trinder, 1951, A rapid method for the determination of sodium in serum, Analyst, 76, 596, 10.1039/an9517600596
Maruna, 1958, Colorimetric determination of sodium in human serum and plasma, Clin. Chim. Acta, 2, 581, 10.1016/0009-8981(57)90064-5
Schales, 1941, A simple and accurate method for the determination of chloride in biological fluids, Biol. Chem., 877
Schoenfeld, 1964, A colorimetric method for determination of serum chloride, Clin. Chem., 10, 533, 10.1093/clinchem/10.6.533
Terri, 1958, Determination of potassium by using sodium tetraphenylboron, Am. J. Clin. Pathol., 29, 86
Sunderman, 1959, The rapid colorimetric estimation of potassium, American J. Clin. Pathol., 29, 1
Cooper, 1970, 159, 10.1016/B978-0-12-609106-9.50021-X
Lowry, 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265, 10.1016/S0021-9258(19)52451-6
Sathya, 2012, Acute and sublethal effects in an Indian major carp Cirrhinus mrigala exposed to silver nitrate: gill Na+/K+-ATPase, plasma electrolytes and biochemical alterations, Fish Shell fish Immunol., 32, 862, 10.1016/j.fsi.2012.02.014
Tarzwell, 1971, Measurement of pollution effects on living organisms bioassays to determine allowable waste concentrations in the aquatic environment, J. Roy- Soc. Lond. B., 177, 279, 10.1098/rspb.1971.0029
Hogstrand, 1998, Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish: implications for water quality criteria, Environ. Toxicol. Chem., 17, 547, 10.1002/etc.5620170405
Dolezelova, 2008, Comparison of the sensitivity of Danio rerio and Poecilia reticulate to silver nitrate in short-term tests, Interdis. Toxicol., 1, 200, 10.2478/v10102-010-0040-0
Grosell, 2000, A nose-to-nose comparison of the physiological effects of exposure to ionic silver versus silver chloride in the European eel (Anguilla anguilla) and the rainbow trout (Oncorhynchus mykiss), Aquat. Toxicol., 48, 327, 10.1016/S0166-445X(99)00029-6
LeBlanc, 1984, The influence of speciation on the toxicity of silver to fathead minnow (Pimephales promelas), Environ. Toxicol. Chem., 3, 7, 10.1002/etc.5620030106
U.S. Environmental Protection Agency, 1991
A.G. Heath, 1995, 384
Sayed, 2020, Histopathological and histochemical effects of silver nanoparticles on the gills and muscles of African catfish (Clarias garepinus), Scientific African, 7, e00230, 10.1016/j.sciaf.2019.e00230
Cambier, 2018, Fate and effects of silver nanoparticles on early life-stage development of zebra fish (Danio rerio) in comparison to silver nitrate, Sci. Total Environ., 610–611, 972, 10.1016/j.scitotenv.2017.08.115
Vali, 2020, The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses, Ecotoxicol. Environ. Saf., 194, 110353, 10.1016/j.ecoenv.2020.110353
Khosravi-Katuli, 2018, Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): accumulation, physiology and histopathology, J. Hazard. Mater., 359, 373, 10.1016/j.jhazmat.2018.07.064
Lankveld, 2010, A. Troost–de Jong, C. Noorlander, J. van Eijkeren, R. Geertsma, W. De Jong, the kinetics of the tissue distribution of silver nanoparticles of different sizes, Biomaterials, 31, 8350, 10.1016/j.biomaterials.2010.07.045
Afifi, 2016, Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii, Saudi J. Biol. Sci., 23, 754, 10.1016/j.sjbs.2016.06.008
McCormick, 2009, Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon, J. Experi. Biol., 212, 3994, 10.1242/jeb.037275
Kimellberg, 1974, Effect of phospholipids acetyl chain fluidity phase transition and cholesterol in (Na++ K+), stimulated adenosine triphosphatase, J. Biol. Chem., 249, 1071, 10.1016/S0021-9258(19)42943-8
Wood, 1996, The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+, Aquat. Toxicol., 35, 93, 10.1016/0166-445X(96)00003-3
Ay, 1999, Copper and lead accumulation in tissues of a freshwater fish Tilapia zillii and its effects on the branchial Na+/K+-ATPase activity, Bull. Environ. Contam. Toxicol., 52862, 160, 10.1007/s001289900855
Fabrega, 2011, Silver nanoparticles: behaviour and effects in the aquatic environment, Environ. Internat., 37, 517, 10.1016/j.envint.2010.10.012
Suvetha, 2010, Influence of cypermethrin toxicity on ionic regulation and gill Na+, K+-ATPase activity of a freshwater teleost fish Cyprinus carpio, Environ. Toxicol. Pharmacol., 29, 44, 10.1016/j.etap.2009.09.005
McCormick, 1993, Methods for nonlethal gill biopsy and measurement of Na+, K+ATPase activity, Canadian J. Fisher. Aquat. Sci., 50, 656, 10.1139/f93-075
Vutukuru, 2003, Chromium induced alterations in some biochemical profiles of the Indian major carp, Labeo rohita (Hamilton), Bull. Environ. Contam. Toxicol., 70, 118, 10.1007/s00128-002-0164-9
Farmen, 2012, Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles, Aquat. Toxicol., 108, 78, 10.1016/j.aquatox.2011.07.007
Webb, 1998, Physiological analysis of the stress response associated with acute silver nitrate exposure in freshwater rainbow trout (Oncorhynchus mykiss), Environ. Toxicol. Chem., 17, 579, 10.1002/etc.5620170408
Naguib, 2020, Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; biochemical, histopathological, and histochemical studies, Toxicol. Rep., 7, 133, 10.1016/j.toxrep.2020.01.002
Fonseca, 2016, From catchment to fish: impact of anthropogenic pressures on gill histopathology, Sci. Total Environ., 550, 972, 10.1016/j.scitotenv.2016.01.199
Sayadi, 2020, Exposure effects of iron oxide nanoparticles and iron salts in blackfish (Capoeta fusca): Acute toxicity, bioaccumulation, depuration, and tissue histopathology, Chemosphere, 247, 125900, 10.1016/j.chemosphere.2020.125900
Capaldo, 2019, Changes in the gills of the European eel (Anguilla anguilla) after chronic exposure to environmental cocaine concentration, Ecotoxicol. Environ. Saf., 169, 112, 10.1016/j.ecoenv.2018.11.010
Hinton, 2001, Toxic responses of the liver, 248
Wolf, 2018, A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models, Aquat. Toxicol., 197, 60, 10.1016/j.aquatox.2018.01.013