Tích lũy sinh học và quá trình khử độc tố đồng và cadmium nhờ glutathione trong Sphagnum squarrosum Crome Samml.

Springer Science and Business Media LLC - Tập 184 - Trang 4097-4103 - 2011
Anuj Saxena1, Anjali Saxena2
1Department of Botany, Sacred Heart Degree College, Sitapur, India
2Department of Chemistry, Bareilly College, Bareilly, India

Tóm tắt

Các phản ứng sinh lý và sinh hóa, khả năng tích lũy kim loại và tiềm năng chịu đựng của Sphagnum squarrosum Crome Samml. đối với Cu và Cd đã được nghiên cứu để xác định khả năng sinh chỉ thị sinh học và khả năng khử độc của nó. Kết quả cho thấy rằng việc điều trị bằng glutathione làm tăng tiềm năng tích lũy kim loại và đóng một vai trò nhất định trong việc loại bỏ kim loại nặng. Sự phong phú cao của Sphagnum ở những khu vực giàu kim loại cho thấy rõ khả năng chịu đựng kim loại cao của nó. Thí nghiệm này chứng minh rằng S. squarrosum có khả năng tích lũy và chịu đựng một lượng lớn kim loại, và tính khả thi trong việc ứng dụng nó như một loài chỉ thị sinh học và kiểm nghiệm khử độc trong môi trường bị ô nhiễm kim loại.

Từ khóa


Tài liệu tham khảo

Alscher, R. G. (1989). Biosynthesis and antioxidant function of glutathione in plants. Plant Physiology, 77, 457–464. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205. Bhandal, I. S., & Kaur, H. (1992). Heavy metal inhibition of nitrate uptake and in vivo nitrate reductase in roots of wheat, Triticum aestivum. Indian Journal of Plant Physiology, 35, 281–284. Bhattacharya, M., Choudhuri, M. A., & Bhattacharya, M. (1995). Heavy metal (Pb2+ and Cd2+) stress induced damages in Vigna seedlings and possible involvement of phytochelatin like substances in mitigation of heavy metal stress. Indian Journal of Experimental Biology, 33(3), 236–238. Blagnyte, R., & Paliulis, D. (2010). Research into heavy metals pollution of atmosphere applying moss as bioindicator: a literature review. Environmental Research, Engineering and Management, 4(54), 26–33. Burns, L. A., Sutter, K., Menge, S., Neumann, D., & Krauss, G. J. (2001). Cadmium lets increase the glutathione pool in bryophytes. Journal of Plant Physiology, 158(1), 79–89. Chen, S. L., & Kao, S. H. (1995). Glutathione reduces the inhibition of rice seedling root growth catalysed by cadmium. Plant Growth Regulator, 16, 249–252. Chen, X., Wang, J., Shi, Y., Zhao, M. Q., & Chi, G. Y. (2011). Effect of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical Studies, 52, 41–46. Echols, R., & Kisailus, E. (1992). Cell fractionation in plants. In J. G. Chirikjian (Ed.), Biotechnology: theory and techniques. Plant biotechnology, animal cell culture and immunobiotechnology. London: Jones and Bartlett Publishers. Glime, J. M., & Keen, R. E. (1984). The importance of bryophytes in a man-centered world. Journal of Hattori Botanical Lab, 55, 133–146. Godbold, D. L. (1994). Aluminium and heavy metal stress: from the rhizosphere to the whole plant. In D. L. Godbold & Z. Zhutterman (Eds.), Effects of acid rain on forest processes (pp. 232–264). New York: Wiley-Liss. Grill, E., Winnacker, E. L., & Zenk, M. H. (1991). Phytochelatins. In J. F. Riordon & B. L. Valle (Eds.), Methods in enzymology 205 (pp. 333–341). New York: Academic. Gupta, M., Tripathi, R. D., Rai, U. N., & Haq, W. (1999). Lead induced synthesis of metal binding peptides (phytochelatins) in the submerged macrophyte Vallisneria spiralis L. Physiology and Molecular Biology of Plants, 5, 173–180. Hedge, J. E., & Hofreiter, B. T. (1962). In R. L. Whistler & J. N. Be Miller (Eds.), Carbohydrate chemistry 17. New York: Academic. Hou, W., Chen, X., Song, G., Wang, Q., & Chang, C. C. (2007). Effect of copper and cadmium on heavy metal polluted water body restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry, 45(1), 62–69. Inouhe, M. (2005). Phytochelatins. Brazilian Journal of Plant Physiology, 17(1), 65–78. Kevresan, S., Papovic, M., Kandrac, J., & Petrovic, N. (1998). Effect of heavy metals on nitrate and protein metabolism in sugar beet. Biologia Plantarum (Czech Republic), 41(2), 235–240. Leopold, I., Gunther, D., Schinidt, J., & Neumann, D. (1999). Phytochelatins and heavy metal tolerance. Phytochemistry, 50, 1323–1325. Lowry, O. H., Rose, N. J., Brough, A. L., & Randall, N. R. J. (1951). Protein measurement with foline phenol reagent. J Biol Chem, 193, 265–275. Maier, E. A., Matthews, R. D., McDowell, J. A., Walden, R. R., & Ahner, B. A. (2003). Environmental cadmium level increase phytochelatin and glutathione in lettuce grown in a chelator-buffered nutrient medium. Journal of Environmental Quality, 32(4), 1356–1364. Nag, P., Paul, A. K., & Mukherjee, S. K. (1981). Heavy metal effects in plant tissues involving chlorophyll, chylorophyllase, Hill reaction activity and gel electrophoretic patterns of soluble proteins. Indian Journal of Experimental Biology, 19, 702–706. Pandit, B. R., & Prasannakumar, P. G. (1999). Effect of metals of Jowar (Sorghum bicolor L.) seedling growth—II, biochemical changes. Pollution Research, 18(4), 483–488. Putter, J. (1974). Methods of enzymatic analysis 2 (Ed Bergmeyer) (p. 685). New York: Academic. Rau, S., Miersah, J., Neumann, D., Weber, E., & Krauss, G. J. (2007). Biochemical responses of the aquatic moss Fontinalis antipyretica to Cd, Cu, Pb and Zn determined by chlorophyll fluorescence and protein levels. Environmental and Experimental Botany, 59(3), 299–306. Ruhling, A., & Tyler, G. (1973). Heavy metal deposition in Scandinavia. Water, Air, and Soil Pollution, 2, 445–455. Satyakala, G., & Jamil, K. (1997). Studies on the effect of heavy metal pollution on Pistia statiotes L. (water lettuce). Indian Journal of Environmental Health, 39(1), 1–7. Saxena, D. K., & Saxena, A. (1999). Biomonitoring of SO2 phytotoxicity on Sphagnum squarrosum Cram. Samml. Journal of Indian Botanical Society, 78(3 and 4), 367–374. Saxena, D. K., Saxena, A., & Srivastava, H. S. (1999). Heavy metal accumulation and in vivo nitrate reductase activity in the Sphagnum squarrosum Cram. Samml. Proceedings of National Academy of Science, India, 69(B) III and IV, 307–312 Sharma, H. (2011). Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4, 118–138. Shimwell, D. W., & Laurie, A. E. (1972). Lead and zinc contamination of vegetation in the Southern Pennines. Environmental Pollution, 3, 291–301. Srivastava, H. S. (1975). Distribution of nitrate reductase in ageing bean seedlings. Plant and Cell Physiology, 16, 995–999. Srivastava, M., Ma, L. Q., Singh, N., & Singh, S. (2005). Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. Journal of Experimental Botany, 56(415), 1335–1342. Stobart, A. K., Griffiths, W. T., Ameen-Bukhari, I., & Sherwood, R. P. (1985). The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Plant Physiology, 63, 293–298. Syso, A. S. (1998). Using the Cr, Ni relationship for monitoring environmental pollution. Agrokhimiya, 4, 76–83. Vallee, B. L., & Ulmer, D. D. (1972). Biochemical effects of mercury, cadmium and lead. Annual Review of Biochemistry, 41, 91. Vig, K., Megharaj, M., Sethunathan, N., & Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Advances in Environmental Research, 8, 121–135.