BioWord: A sequence manipulation suite for Microsoft Word

BMC Bioinformatics - Tập 13 - Trang 1-7 - 2012
Laura J Anzaldi1, Daniel Muñoz-Fernández2, Ivan Erill1,2
1Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, USA
2Departament de Ciències de la Computació, Universitat Autònoma de Barcelona, Bellaterra, Spain

Tóm tắt

The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.

Tài liệu tham khảo

Neerincx PB, Leunissen JA: Evolution of web services in bioinformatics. Briefings in Bioinformatics. 2005, 6 (2): 178-188. 10.1093/bib/6.2.178. Navas-Delgado I, Rojano-Munoz Mdel M, Ramirez S, Perez AJ, Andres Leon E, Aldana-Montes JF, Trelles O: Intelligent client for integrating bioinformatics services. Bioinformatics (Oxford, England). 2006, 22 (1): 106-111. 10.1093/bioinformatics/bti740. Carver T, Bleasby A: The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics (Oxford, England). 2003, 19 (14): 1837-1843. 10.1093/bioinformatics/btg251. Subramaniam S: The Biology Workbench–a seamless database and analysis environment for the biologist. Proteins. 1998, 32 (1): 1-2. 10.1002/(SICI)1097-0134(19980701)32:1<1::AID-PROT1>3.0.CO;2-Q. Basu MK: SeWeR: a customizable and integrated dynamic HTML interface to bioinformatics services. Bioinformatics (Oxford, England). 2001, 17 (6): 577-578. 10.1093/bioinformatics/17.6.577. Bare JC, Shannon PT, Schmid AK, Baliga NS: The Firegoose: two-way integration of diverse data from different bioinformatics web resources with desktop applications. BMC Bioinforma. 2007, 8: 456-10.1186/1471-2105-8-456. Shahid M, Alam I, Fuellen G: Biotool2Web: creating simple Web interfaces for bioinformatics applications. Appl Bioinforma. 2006, 5 (1): 63-66. 10.2165/00822942-200605010-00009. Womble DD: GCG: The Wisconsin Package of sequence analysis programs. Methods Mol Biol (Clifton, NJ). 2000, 132: 3-22. Burland TG: DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol (Clifton, NJ). 2000, 132: 71-91. Stothard P: The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques. 2000, 28 (6): 1102-1104. Molecular Toolkit: http://www.vivo.colostate.edu/molkit/, ISO/IEC: Information technology -- Document description and processing languages -- Office Open XML File Formats. 2008, International Organization for Standardization,  , 1 OpenXMLDeveloper: http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2009/08/07/7293.aspx, Lipman DJ, Pearson WR: Rapid and sensitive protein similarity searches. Science (New York, NY). 1985, 227 (4693): 1435-1441. 10.1126/science.2983426. Fristensky B: Feature expressions: creating and manipulating sequence datasets. Nucleic Acids Res. 1993, 21 (25): 5997-6003. 10.1093/nar/21.25.5997. Nakamura Y, Gojobori T, Ikemura T: Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Res. 1997, 25 (1): 244-245. 10.1093/nar/25.1.244. Cornish-Bowden A: Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. Nucleic Acids Res. 1985, 13 (9): 3021-3030. 10.1093/nar/13.9.3021. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982, 157 (1): 105-132. 10.1016/0022-2836(82)90515-0. Schneider TD: Information Content of Individual Genetic Sequences. J Theor Biol. 1997, 189 (4): 427-441. 10.1006/jtbi.1997.0540. Stormo GD, Fields DS: Specificity, free energy and information content in protein-DNA interactions. Trends Biochem Sci. 1998, 23 (3): 109-113. 10.1016/S0968-0004(98)01187-6. Erill I, O’Neill MC: A reexamination of information theory-based methods for DNA-binding site identification. BMC Bioinforma. 2009, 10 (1): 57-10.1186/1471-2105-10-57. Erill I, Escribano M, Campoy S, Barbe J: In silico analysis reveals substantial variability in the gene contents of the gamma proteobacteria LexA-regulon. Bioinformatics (Oxford, England). 2003, 19 (17): 2225-2236. 10.1093/bioinformatics/btg303. Schneider TD: Consensus sequence Zen. Appl Bioinforma. 2002, 1 (3): 111-119. Schneider TD, Stephens RM: Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990, 18 (20): 6097-6100. 10.1093/nar/18.20.6097. Erill I, Jara M, Salvador N, Escribano M, Campoy S, Barbe J: Differences in LexA regulon structure among Proteobacteria through in vivo assisted comparative genomics. Nucleic Acids Res. 2004, 32 (22): 6617-6626. 10.1093/nar/gkh996. Hertz GZ, Hartzell GW, Stormo GD: Identification of consensus patterns in unaligned DNA sequences known to be functionally related. Comput Appl Biosci. 1990, 6 (2): 81-92. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC: Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science (New York, NY). 1993, 262 (5131): 208-214. 10.1126/science.8211139. Smith TF, Waterman MS: Identification of common molecular subsequences. J Mol Biol. 1981, 147 (1): 195-197. 10.1016/0022-2836(81)90087-5. Needleman SB, Wunsch CD: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970, 48 (3): 443-453. 10.1016/0022-2836(70)90057-4. Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol; ISMB. 1994, 2: 28-36. Luo Y, Pfuetzner RA, Mosimann S, Paetzel M, Frey EA, Cherney M, Kim B, Little JW, Strynadka NC: Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell. 2001, 106 (5): 585-594. 10.1016/S0092-8674(01)00479-2. Munch R, Hiller K, Barg H, Heldt D, Linz S, Wingender E, Jahn D: PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res. 2003, 31 (1): 266-269. 10.1093/nar/gkg037.