Bio-inspired heuristics hybrid with interior-point method for active noise control systems without identification of secondary path

Zhejiang University Press - Tập 19 Số 2 - Trang 246-259 - 2018
Muhammad Asif Zahoor Raja1, Muhammad Saeed Aslam2, Naveed Ishtiaq Chaudhary3, Wasim Khan1
1Department of Electrical Engineering, COMSATS Institute of Information Technology, Attock Campus, Attock, Pakistan
2Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
3Department of Electronic Engineering, International Islamic University, Islamabad, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmad I, Raja MAZ, Bilal M, et al., 2017. Neural network methods to solve the Lane-Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neur Comput Appl, 28(Suppl 1):929–944. https://doi.org/10.1007/s00521-016-2400-y

Akhtar MT, Nishihara A, 2015. Data-reusing-based filteredreference adaptive algorithms for active control of impulsive noise sources. Appl Acoust, 92:18–26. https://doi.org/10.1016/j.apacoust.2015.01.006

Akhtar MT, Abe M, Kawamata M, 2006. A new variable step size LMS algorithm-based method for improved online secondary path modeling in active noise control systems. IEEE Trans Audio Speech Lang Process, 14(2):720–726. https://doi.org/10.1109/TSA.2005.855829

Chang CY, Shyu KK, 2003. Active noise cancellation with a fuzzy adaptive filtered-X algorithm. IEE Proc Circ Dev Syst, 150(5):416–422. https://doi.org/10.1049/ip-cds:20030406

Chang CY, Luoh FB, 2007. Enhancement of active noise control using neural-based filtered-X algorithm. J Sound Vib, 305(1-2):348–356. https://doi.org/10.1016/j.jsv.2007.04.007

Chang CY, Chen DR, 2010. Active noise cancellation without secondary path identification by using an adaptive genetic algorithm. IEEE Trans Instrum Meas, 59(9):2315–2327. https://doi.org/10.1109/TIM.2009.2036410

George NV, Panda G, 2012. A particle-swarm-optimizationbased decentralized nonlinear active noise control system. IEEE Trans Instrum Meas, 61(12):3378–3386. https://doi.org/10.1109/TIM.2012.2205492

George NV, Panda G, 2013. Advances in active noise control: a survey, with emphasis on recent nonlinear techniques. Signal Process, 93(2):363–377. https://doi.org/10.1016/j.sigpro.2012.08.013

Gholami-Boroujeny S, Eshghi M, 2012. Non-linear active noise cancellation using a bacterial foraging optimisation algorithm. IET Signal Process, 6(4):364–373. https://doi.org/10.1049/iet-spr.2011.0092

Gholami-Boroujeny S, Eshghi M, 2014. Active noise control using an adaptive bacterial foraging optimization algorithm. Signal Image Video Process, 8(8):1507–1516. https://doi.org/10.1007/s11760-012-0385-2

Gotmare A, Bhattacharjee SS, Patidar R, et al., 2017. Swarm and evolutionary computing algorithms for system identification and filter design: a comprehensive review. Swarm Evol Comput, 32:68–84. https://doi.org/10.1016/j.swevo.2016.06.007

Hoseini P, Shayesteh MG, 2013. Efficient contrast enhancement of images using hybrid ant colony optimisation, genetic algorithm, and simulated annealing. Dig Signal Process, 23(3):879–893. https://doi.org/10.1016/j.dsp.2012.12.011

Iacca G, Caraffini F, Neri F, 2013. Memory-saving memetic computing for path-following mobile robots. Appl Soft Comput, 13(4):2003–2016. https://doi.org/10.1016/j.asoc.2012.11.039

Kuo SM, Morgan D, 1995. Active Noise Control Systems: Algorithms and DSP Implementations. John Wiley & Sons, Inc., New York, USA.

Kurczyk S, Pawelczyk M, 2014a. Active noise control using a fuzzy inference system without secondary path modelling. Arch Acoust, 39(2):243–248. https://doi.org/10.2478/aoa-2014-0028

Kurczyk S, Pawelczyk M, 2014b. Active noise control without secondary path modelling—varying-delay LMS approach. IEEE 19th Int Conf on Methods and Models in Automation and Robotics, p.134–139. https://doi.org/10.1109/MMAR.2014.6957338

Raja MAZ, Khan JA, Chaudhary NI, et al., 2016a. Reliable numerical treatment of nonlinear singular Flierl-Petviashivili equations for unbounded domain using ANN, GAs, and SQP. Appl Soft Comput, 38:617–636. https://doi.org/10.1016/j.asoc.2015.10.017

Raja MAZ, Zameer A, Khan AU, et al., 2016b. A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming. SpringerPlus, 5(1):1400. https://doi.org/10.1186/s40064-016-3093-5

Reeves C, 2010. Genetic algorithms. In: Glover FW, Kochenberger GA (Eds.), Handbook of Metaheuristics. Springer, New York, p.55–82.

Rout NK, Das DP, Panda G, 2012. Particle swarm optimization based active noise control algorithm without secondary path identification. IEEE Trans Instrum Meas, 61(2):554–563. https://doi.org/10.1109/TIM.2011.2169180

Sivanandam SN, Deepa SN, 2007. Introduction to Genetic Algorithms. Springer, Heidelberg.

Tan L, Jiang J, 2001. Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Trans Signal Process, 49(8):1667–1676. https://doi.org/10.1109/78.934136

Tan XH, Shen RM, Wang Y, 2012. Personalized course generation and evolution based on genetic algorithms. J Zhejiang Univ-Sci C (Comput & Electron), 13(12):909–917. https://doi.org/10.1631/jzus.C1200174

Wu B, Ma JT, Wu P, 2014. Implement an indoor low frequency noise reduction system based on FXLMS algorithm. Appl Mech Mater, 667:440–447. https://doi.org/10.4028/www.scientific.net/AMM.667.440

Zhang L, Lampe M, Wang Z, 2011. A hybrid genetic algorithm to optimize device allocation in industrial Ethernet networks with real-time constraints. J Zhejiang Univ-Sci C (Comput & Electron), 12(12):965–975. https://doi.org/10.1631/jzus.C1100045

Zhang M, Lan H, Ser W, 2001. Cross-updated active noise control system with online secondary path modeling. IEEE Trans Speech Audio Process, 9(5):598–602. https://doi.org/10.1109/89.928924

Zhou DY, DeBrunner V, 2007. Efficient adaptive nonlinear filters for nonlinear active noise control. IEEE Trans Circ Syst I, 54(3):669–681. https://doi.org/10.1109/TCSI.2006.887636