Bio-inspired, helically oriented tubular structures with tunable deformability and energy absorption performance under compression
Tài liệu tham khảo
Ashby, 1983, The mechanical properties of cellular solids, Metall. Trans. A., 14, 1755, 10.1007/BF02645546
Meyers, 2008, Biological materials: Structure and mechanical properties, Prog. Mater. Sci., 53, 1, 10.1016/j.pmatsci.2007.05.002
M.F.A. Lorna, J. Gibson, Cellular Solids: Structure and Properties, 2nd Editio, Cambridge University Press, 1999.
Naleway, 2015, Structural Design Elements in Biological Materials: Application to Bioinspiration, Adv. Mater., 27, 5455, 10.1002/adma.201502403
Bouligand, 1972, Twisted fibrous arrangements in biological materials and cholesteric mesophases, Tissue Cell., 4, 189, 10.1016/S0040-8166(72)80042-9
Wu, 2020, Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity, Proc. Natl. Acad. Sci. U. S. A., 117, 15465, 10.1073/pnas.2000639117
J.C. Weaver, G.W. Milliron, A. Miserez, K. Evans-Lutterodt, S. Herrera, I. Gallana, W.J. Mershon, B. Swanson, P. Zavattieri, E. DiMasi, D. Kisailus, The stomatopod dactyl club: A formidable damage-tolerant biological hammer, Science (80-.). 336 (2012) 1275–1280. 10.1126/science.1218764.
Zimmermann, 2013, Mechanical adaptability of the Bouligand-type structure in natural dermal armour, Nat. Commun., 4, 1, 10.1038/ncomms3634
Rivera, 2021, Structural Design Variations in Beetle Elytra, Adv. Funct. Mater., 31, 1
Weaver, 2007, Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum, J. Struct. Biol., 158, 93, 10.1016/j.jsb.2006.10.027
Huang, 2019, A natural energy absorbent polymer composite: The equine hoof wall, Acta Biomater., 90, 267, 10.1016/j.actbio.2019.04.003
Huang, 2017, Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn, Acta Biomater., 64, 1, 10.1016/j.actbio.2017.09.043
Kasapi, 1999, Micromechanics of the equine hoof wall: Optimizing crack control and material stiffness through modulation of the properties of keratin, J. Exp. Biol., 202, 337, 10.1242/jeb.202.4.377
Yaraghi, 2016, A Sinusoidally Architected Helicoidal Biocomposite, Adv. Mater., 28, 6835, 10.1002/adma.201600786
Suksangpanya, 2018, Crack twisting and toughening strategies in Bouligand architectures, Int. J. Solids Struct., 150, 83, 10.1016/j.ijsolstr.2018.06.004
Mo, 2020, Spatial programming of defect distributions to enhance material failure characteristics, Extrem. Mech. Lett., 34, 10.1016/j.eml.2019.100598
Liu, 2022, 3D concrete printing of bioinspired Bouligand structure: A study on impact resistance, Addit. Manuf., 50
Yin, 2020, Tough Nature-Inspired Helicoidal Composites with Printing-Induced Voids, Cell Reports Phys. Sci., 1, 10.1016/j.xcrp.2020.100109
Bates, 2016, 3D printed polyurethane honeycombs for repeated tailored energy absorption, Mater. Des., 112, 172, 10.1016/j.matdes.2016.08.062
Bates, 2019, Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities, Mater. Des., 162, 130, 10.1016/j.matdes.2018.11.019
Rahman, 2020, Optimization of energy absorption performance of polymer honeycombs by density gradation, Compos. Part C Open Access., 3, 10.1016/j.jcomc.2020.100052
Lvov, 2020, Design and mechanical properties of 3D-printed auxetic honeycomb structure, Mater. Today Commun., 24
Ingrole, 2017, Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement, Mater. Des., 117, 72, 10.1016/j.matdes.2016.12.067
Habib, 2017, In-plane energy absorption evaluation of 3D printed polymeric honeycombs, Virtual Phys. Prototyp., 12, 117, 10.1080/17452759.2017.1291354
Qi, 2005, Stress-strain behavior of thermoplastic polyurethanes, Mech. Mater., 37, 817, 10.1016/j.mechmat.2004.08.001
Farrell, 2020, Extension twist deformation response of an auxetic cylindrical structure inspired by deformed cell ligaments, Compos. Struct., 238, 10.1016/j.compstruct.2020.111901
Luong, 2015, Quasi-static and high strain rates compressive response of iron and Invar matrix syntactic foams, Mater. Des., 66, 516, 10.1016/j.matdes.2014.07.030
Maiti, 1984, Deformation and energy absorption diagrams for cellular solids, Acta Metall., 32, 1963, 10.1016/0001-6160(84)90177-9
Miltz, 1990, Energy absorption characteristics of polymeric foams used as cushioning materials, Polym. Eng. Sci., 30, 129, 10.1002/pen.760300210
Avalle, 2001, Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram, Int. J. Impact Eng., 25, 455, 10.1016/S0734-743X(00)00060-9
Jabareen, 2013, A ten node tetrahedral Cosserat Point Element (CPE) for nonlinear isotropic elastic materials, Comput. Mech., 52, 257, 10.1007/s00466-012-0811-x
Zhang, 2020, Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review, Compos. Part B Eng., 201, 108340, 10.1016/j.compositesb.2020.108340
Bertoldi, 2010, Negative poisson’s ratio behavior induced by an elastic instability, Adv. Mater., 22, 361, 10.1002/adma.200901956
Bates, 2016, 3D printed elastic honeycombs with graded density for tailorable energy absorption, Act. Passiv. Smart Struct. Integr. Syst., 2016
Sharma, 2022, Bio-inspired repeatable lattice structures for energy absorption: Experimental and finite element study, Compos. Struct., 283, 10.1016/j.compstruct.2021.115102
AlNashar, 2021, Design of hierarchical architected lattices for enhanced energy absorption, Materials (Basel)., 14
Townsend, 2020, 3D printed origami honeycombs with tailored out-of-plane energy absorption behavior, Mater. Des., 195, 10.1016/j.matdes.2020.108930