Bio-inspired, helically oriented tubular structures with tunable deformability and energy absorption performance under compression

Materials and Design - Tập 222 - Trang 111076 - 2022
Cheng-Che Tung1, Yen-Shuo Chen1, Wen-Fei Chen1, Po-Yu Chen1
1Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu City 30013, Taiwan, ROC

Tài liệu tham khảo

Ashby, 1983, The mechanical properties of cellular solids, Metall. Trans. A., 14, 1755, 10.1007/BF02645546 Meyers, 2008, Biological materials: Structure and mechanical properties, Prog. Mater. Sci., 53, 1, 10.1016/j.pmatsci.2007.05.002 M.F.A. Lorna, J. Gibson, Cellular Solids: Structure and Properties, 2nd Editio, Cambridge University Press, 1999. Naleway, 2015, Structural Design Elements in Biological Materials: Application to Bioinspiration, Adv. Mater., 27, 5455, 10.1002/adma.201502403 Bouligand, 1972, Twisted fibrous arrangements in biological materials and cholesteric mesophases, Tissue Cell., 4, 189, 10.1016/S0040-8166(72)80042-9 Wu, 2020, Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity, Proc. Natl. Acad. Sci. U. S. A., 117, 15465, 10.1073/pnas.2000639117 J.C. Weaver, G.W. Milliron, A. Miserez, K. Evans-Lutterodt, S. Herrera, I. Gallana, W.J. Mershon, B. Swanson, P. Zavattieri, E. DiMasi, D. Kisailus, The stomatopod dactyl club: A formidable damage-tolerant biological hammer, Science (80-.). 336 (2012) 1275–1280. 10.1126/science.1218764. Zimmermann, 2013, Mechanical adaptability of the Bouligand-type structure in natural dermal armour, Nat. Commun., 4, 1, 10.1038/ncomms3634 Rivera, 2021, Structural Design Variations in Beetle Elytra, Adv. Funct. Mater., 31, 1 Weaver, 2007, Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum, J. Struct. Biol., 158, 93, 10.1016/j.jsb.2006.10.027 Huang, 2019, A natural energy absorbent polymer composite: The equine hoof wall, Acta Biomater., 90, 267, 10.1016/j.actbio.2019.04.003 Huang, 2017, Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn, Acta Biomater., 64, 1, 10.1016/j.actbio.2017.09.043 Kasapi, 1999, Micromechanics of the equine hoof wall: Optimizing crack control and material stiffness through modulation of the properties of keratin, J. Exp. Biol., 202, 337, 10.1242/jeb.202.4.377 Yaraghi, 2016, A Sinusoidally Architected Helicoidal Biocomposite, Adv. Mater., 28, 6835, 10.1002/adma.201600786 Suksangpanya, 2018, Crack twisting and toughening strategies in Bouligand architectures, Int. J. Solids Struct., 150, 83, 10.1016/j.ijsolstr.2018.06.004 Mo, 2020, Spatial programming of defect distributions to enhance material failure characteristics, Extrem. Mech. Lett., 34, 10.1016/j.eml.2019.100598 Liu, 2022, 3D concrete printing of bioinspired Bouligand structure: A study on impact resistance, Addit. Manuf., 50 Yin, 2020, Tough Nature-Inspired Helicoidal Composites with Printing-Induced Voids, Cell Reports Phys. Sci., 1, 10.1016/j.xcrp.2020.100109 Bates, 2016, 3D printed polyurethane honeycombs for repeated tailored energy absorption, Mater. Des., 112, 172, 10.1016/j.matdes.2016.08.062 Bates, 2019, Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities, Mater. Des., 162, 130, 10.1016/j.matdes.2018.11.019 Rahman, 2020, Optimization of energy absorption performance of polymer honeycombs by density gradation, Compos. Part C Open Access., 3, 10.1016/j.jcomc.2020.100052 Lvov, 2020, Design and mechanical properties of 3D-printed auxetic honeycomb structure, Mater. Today Commun., 24 Ingrole, 2017, Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement, Mater. Des., 117, 72, 10.1016/j.matdes.2016.12.067 Habib, 2017, In-plane energy absorption evaluation of 3D printed polymeric honeycombs, Virtual Phys. Prototyp., 12, 117, 10.1080/17452759.2017.1291354 Qi, 2005, Stress-strain behavior of thermoplastic polyurethanes, Mech. Mater., 37, 817, 10.1016/j.mechmat.2004.08.001 Farrell, 2020, Extension twist deformation response of an auxetic cylindrical structure inspired by deformed cell ligaments, Compos. Struct., 238, 10.1016/j.compstruct.2020.111901 Luong, 2015, Quasi-static and high strain rates compressive response of iron and Invar matrix syntactic foams, Mater. Des., 66, 516, 10.1016/j.matdes.2014.07.030 Maiti, 1984, Deformation and energy absorption diagrams for cellular solids, Acta Metall., 32, 1963, 10.1016/0001-6160(84)90177-9 Miltz, 1990, Energy absorption characteristics of polymeric foams used as cushioning materials, Polym. Eng. Sci., 30, 129, 10.1002/pen.760300210 Avalle, 2001, Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram, Int. J. Impact Eng., 25, 455, 10.1016/S0734-743X(00)00060-9 Jabareen, 2013, A ten node tetrahedral Cosserat Point Element (CPE) for nonlinear isotropic elastic materials, Comput. Mech., 52, 257, 10.1007/s00466-012-0811-x Zhang, 2020, Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review, Compos. Part B Eng., 201, 108340, 10.1016/j.compositesb.2020.108340 Bertoldi, 2010, Negative poisson’s ratio behavior induced by an elastic instability, Adv. Mater., 22, 361, 10.1002/adma.200901956 Bates, 2016, 3D printed elastic honeycombs with graded density for tailorable energy absorption, Act. Passiv. Smart Struct. Integr. Syst., 2016 Sharma, 2022, Bio-inspired repeatable lattice structures for energy absorption: Experimental and finite element study, Compos. Struct., 283, 10.1016/j.compstruct.2021.115102 AlNashar, 2021, Design of hierarchical architected lattices for enhanced energy absorption, Materials (Basel)., 14 Townsend, 2020, 3D printed origami honeycombs with tailored out-of-plane energy absorption behavior, Mater. Des., 195, 10.1016/j.matdes.2020.108930