Bio-inspired CO2 reduction reaction catalysis using soft-oxometalates
Tài liệu tham khảo
Lovelock, 2003, Nature, 426, 769, 10.1038/426769a
Pan, 2018, Crit. Rev. Environ. Sci. Technol., 48, 471, 10.1080/10643389.2018.1469943
Das, 2020, J. Mol. Eng. Mater., 8, 2030002, 10.1142/S2251237320300028
Aresta, 2014, Chem. Rev., 114, 1709, 10.1021/cr4002758
Weinberg, 2012, Chem. Rev., 112, 4016, 10.1021/cr200177j
Ohkawara, 2014, J. Am. Chem. Soc., 136, 10728, 10.1021/ja5046814
Kuwabata, 1993, Chem. Lett., 22, 1631, 10.1246/cl.1993.1631
Kuwabata, 1994, J. Am. Chem. Soc., 116, 5437, 10.1021/ja00091a056
Obert, 1999, J. Am. Chem. Soc., 121, 10.1021/ja991899r
Yu, 2017, J. Biol. Chem., 292, 16872, 10.1074/jbc.M117.785576
Altaş, 2017, Process Biochem., 61, 110, 10.1016/j.procbio.2017.06.017
Çakar, 2018, Prep. Biochem. Biotechnol., 48, 327, 10.1080/10826068.2018.1446150
Raaijmakers, 2001, J. Biol. Inorg. Chem., 6, 398, 10.1007/s007750100215
Raaijmakers, 2002, Structure, 10, 1261, 10.1016/S0969-2126(02)00826-2
Hille, 1996, Chem. Rev., 96, 2757, 10.1021/cr950061t
Romao, 2009, Dalton Trans., 4053, 10.1039/b821108f
Ferry, 1990, FEMS Microbiol. Rev., 7, 377, 10.1111/j.1574-6968.1990.tb04940.x
Zhao, 2003, Curr. Opin. Biotechnol., 14, 583, 10.1016/j.copbio.2003.09.007
Hummel, 1989, EJB Rev., 1989, 85
Wichmann, 2000, Biotechnol. Bioeng., 67, 791, 10.1002/(SICI)1097-0290(20000320)67:6<791::AID-BIT15>3.0.CO;2-I
Tishkov, 2004, Biochem. Mosc., 69, 1252, 10.1007/PL00021765
Amao, 2004, Chem. Lett., 33, 1544, 10.1246/cl.2004.1544
Tsujisho, 2006, Catal. Commun., 7, 173, 10.1016/j.catcom.2005.10.005
Jormakka, 2002, Acta Crystallogr. D Biol. Crystallogr., 58, 160, 10.1107/S0907444901017723
Jormakka, 2002, Science, 295, 1863, 10.1126/science.1068186
Enoch, 1975, J. Biol. Chem., 250, 6693, 10.1016/S0021-9258(19)40989-7
Popov, 1994, Biochem. J., 301, 625, 10.1042/bj3010625
Wang, 2013, J. Bacteriol., 195, 4373, 10.1128/JB.00678-13
Jormakka, 2003, Curr. Opin. Struct. Biol., 13, 418, 10.1016/S0959-440X(03)00098-8
Amao, 2018, Catal. Today, 307, 243, 10.1016/j.cattod.2017.12.029
Amao, 2011, Chem. Cat. Chem., 3, 458
Amao, 2016, Appl. Catal. B Environ., 180, 403, 10.1016/j.apcatb.2015.06.051
Miyatani, 2004, Photochem. Photobiol. Sci., 3, 681, 10.1039/b309596g
Amao, 2009, Appl. Catal. B Environ., 86, 109, 10.1016/j.apcatb.2008.08.008
Niu, 2009, Inorg. Chem. Commun., 12, 853, 10.1016/j.inoche.2009.06.037
Fournier, 1992, J. Mater. Chem., 2, 971, 10.1039/JM9920200971
Cowan, 2001, Inorg. Chem., 40, 6666, 10.1021/ic0106120
Kortz, 2004, Inorg. Chem., 43, 2308, 10.1021/ic0354421
Roy, 2019, Frontiers Chem., 646, 10.3389/fchem.2019.00646
Crans, 2016, New J. Chem., 40, 882, 10.1039/C6NJ90006B
Cronin, 2012, Chem. Soc. Rev., 41, 7333, 10.1039/c2cs90087d
Hill, 1998, Chem. Rev., 98, 1, 10.1021/cr960395y
Aureliano, 2022, Coord. Chem. Rev., 454, 214344, 10.1016/j.ccr.2021.214344
Aureliano, 2021, Coord. Chem. Rev., 447, 214143, 10.1016/j.ccr.2021.214143
Aureliano, 2009, J. Inorg. Biochem., 103, 536, 10.1016/j.jinorgbio.2008.11.010
Kostenkova, 2021, J. Inorg. Biochem., 217, 111356, 10.1016/j.jinorgbio.2021.111356
Althumairy, 2020, Metallomics, 12, 1044, 10.1039/d0mt00044b
Das, 2017, ACS Appl. Mater. Interfaces, 9, 35086, 10.1021/acsami.7b13507
Gonglach, 2019, Nat. Commun., 10, 1, 10.1038/s41467-019-11868-5
Lodh, 2020, Vanadium Catal., 165
Müller, 2012, Chem. Soc. Rev., 41, 7431, 10.1039/c2cs35169b
Mitra, 2009, Chem. Eur. J., 15, 1844, 10.1002/chem.200801602
Schäffer, 2011, Chem.Eur. J., 17, 9634, 10.1002/chem.201101454
Garai, 2012, Angew. Chem. Int. Ed., 51, 10528, 10.1002/anie.201204089
Roy, 2014, Cryst. Eng. Comm., 16, 4667, 10.1039/C4CE00115J
Roy, 2011, Comm. Inorg. Chem., 32, 113, 10.1080/02603594.2011.608443
Thomas, 2018, Cryst. Growth Des., 18, 4068, 10.1021/acs.cgd.8b00443
Paul, 2018, Acta Crystallogr. Sect.C Struct. Chem., 74, 1274, 10.1107/S2053229618007143
Mallick, 2018, Nanoscale, 10, 12713, 10.1039/C8NR03534B
Roy, 2019, J. Mater. Chem. A, 7, 23241, 10.1039/C9TA07646H
Cao, 2019, Molecules, 24, 2069, 10.3390/molecules24112069
Patel, 2016, Catal. Rev., 58, 337, 10.1080/01614940.2016.1171606
Ishizuka, 2018, Green Chem., 20, 1975, 10.1039/C8GC00295A
Cai, 2018, J. Am. Chem. Soc., 140, 4869, 10.1021/jacs.8b00394
Das, 2016, J. Mater. Chem. A, 4, 8875, 10.1039/C6TA02825J
Barman, 2019, Chem. Photo. Chem., 3, 93
Yadav, 2014, J. Am. Chem. Soc., 136, 16728, 10.1021/ja509650r
Lodh, 2018, J. Mater. Chem. A, 6, 20844, 10.1039/C8TA06243A
Amao, 2018, J. CO2 Utilization, 26, 623, 10.1016/j.jcou.2018.06.022
Lin, 2018, Eng. Life Sci., 18, 326, 10.1002/elsc.201700137
Chen, 2010, Cryst. Eng. Comm., 12, 3740, 10.1039/c000744g
Papaconstantinou, 1989, Chem. Soc. Rev., 18, 1, 10.1039/cs9891800001
Crans, 2015, J. Organomet. Chem., 80, 11899, 10.1021/acs.joc.5b02229
Sánchez-Lombardo, 2016, New J. Chem., 40, 962, 10.1039/C5NJ01788B
Crans, 2017, Coord. Chem. Rev., 344, 115, 10.1016/j.ccr.2017.03.016
Wang, 2020, Nano Lett., 20, 2899, 10.1021/acs.nanolett.0c00732
Shen, 2016, Catal. Sci. Technol., 6, 6485, 10.1039/C6CY01468B
Barman, 2018, Chem. Commun., 54, 2369, 10.1039/C7CC09520A
Cordas, 2019, J. Inorg. Biochem., 196, 110694, 10.1016/j.jinorgbio.2019.110694
Sokol, 2018, J. Am. Chem. Soc., 140, 16418, 10.1021/jacs.8b10247
Miller, 2019, Angew. Chem. Int. Ed., 58, 4601, 10.1002/anie.201814419
Das, 2021, J. Mater. Chem. A, 9, 13355, 10.1039/D0TA12255F
Mallick, 2021, Nanoscale, 13, 3543, 10.1039/D0NR06849G
Liu, 2014, New J. Chem., 38, 2292, 10.1039/c4nj00053f
Zhang, 2016, Chemosphere, 162, 228, 10.1016/j.chemosphere.2016.07.102
Amao, 2014, Res. Chem. Intermed., 40, 3267, 10.1007/s11164-014-1832-1
Schouten, 2011, Chem. Sci., 2, 1902, 10.1039/c1sc00277e
Shen, 2016, J. Phys. Chem. C, 120, 15714, 10.1021/acs.jpcc.5b10763
De, 2020, Angew. Chem., 132, 10614, 10.1002/ange.202000601