Bio-imitative Synergistic Color-Changing and Shape-Morphing Elastic Fibers with a Liquid Metal Core

Seonwoo Mun1, Sangmin Lee1, Kwak Jin Bae2, Yejin Bae1, Hye-Min Lee3, Byung-Joo Kim4, Jaesang Yu2, Sungjune Park5
1Department of Nano Convergence Engineering, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Republic of Korea
2Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-Gun, Korea
3R&BD Group 1, Industrialization Division, Korea Carbon Industry Promotion Agency, Jeonju, Republic of Korea
4Department of Advanced Materials and Chemical Engineering, Jeonju University, Jeonju, Republic of Korea
5School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea

Tóm tắt

The systematic integration of color-changing and shape-morphing abilities into entirely soft devices is a compelling strategy for creating adaptive camouflage, electronic skin, and wearable healthcare devices. In this study, we developed soft actuators capable of color change and programmable shape morphing using elastic fibers with a liquid metal core. Once the hollow elastic fiber with the thermochromic pigment was fabricated, liquid metal (gallium) was injected into the core of the fiber. Gallium has a relatively low melting point (29.8 °C); thus, fluidity and metallic conductivity are preserved while strained. The fiber can change color by Joule heating upon applying a current through the liquid metal core and can also be actuated by the Lorentz force caused by the interaction between the external magnetic field and the magnetic field generated around the liquid metal core when a current is applied. Based on this underlying principle, we demonstrated unique geometrical actuations, including flower-like blooming, winging butterflies, and the locomotion of coil-shaped fibers. The color-changing and shape-morphing elastic fiber actuators presented in this study can be utilized in artificial skin, soft robotics, and actuators.

Từ khóa


Tài liệu tham khảo

Kim H, Lee H, Ha I, Jung J, Won P, Cho H, Yeo J, Hong S, Han S, Kwon J, Cho K-J, Ko SH. Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics. Adv Funct Mater. 2018;28:1801847. Zhang P, Debije MG, de Haan LT, Schenning APHJ. Pigmented structural color actuators fueled by near-infrared light. ACS Appl Mater Interfaces. 2022;14:20093. Sato O, Kubo S, Gu Z-Z. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Accounts Chem Res. 2009;42:1. Chung K, Yu S, Heo C-J, Shim JW, Yang S-M, Han MG, Lee H-S, Jin Y, Lee SY, Park N, Shin JH. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv Mater. 2012;24:2375. Yao Y, Yin C, Hong S, Chen H, Shi Q, Wang J, Lu X, Zhou N. Lanthanide-ion-coordinated supramolecular hydrogel inks for 3D printed full-color luminescence and opacity-tuning soft actuators. Chem Mat. 2020;32:8868. Miller R, Owens SJ, Rørslett B. Plants and colour: Flowers and pollination. Opt Laser Technol. 2011;43:282. Hanlon R. Cephalopod dynamic camouflage. Curr Biol. 2007;17:R400. Shi H, Wu S, Si M, Wei S, Lin G, Liu H, Xie W, Lu W, Chen T. Cephalopod-inspired design of photomechanically modulated display systems for on-demand fluorescent patterning. Adv Mater. 2022;34:2107452. Xu L, Wagner RJ, Liu S, He Q, Li T, Pan W, Feng Y, Feng H, Meng Q, Zou X. Locomotion of an untethered, worm-inspired soft robot driven by a shape-memory alloy skeleton. Sci Rep. 2022;12:12392. Liu Y-Q, Chen Z-D, Han D-D, Mao J-W, Ma J-N, Zhang Y-L, Sun H-B. Bioinspired Soft Robots Based on the Moisture-Responsive Graphene Oxide. Adv Sci. 2021;8:2002464. Lu H, Zhang M, Yang Y, Huang Q, Fukuda T, Wang Z, Shen Y. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat Commun. 2018;9:3944. Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature. 2015;521:467. Coyle S, Majidi C, LeDuc P, Hsia KJ. Bio-inspired soft robotics: Material selection, actuation, and design. Extreme Mech Lett. 2018;22:51. Cheng NG, Gopinath A, Wang L, Iagnemma K, Hosoi AE. Thermally tunable, self-healing composites for soft robotic applications. Macromol Mater Eng. 2014;299:1279. Tonazzini A, Mintchev S, Schubert B, Mazzolai B, Shintake J, Floreano D. Variable stiffness fiber with self-healing capability. Adv Mater. 2016;28:10142. Babu KF, Choi WM. Thermal actuation properties of bimorph based on PVDF/rGO composites. Compos Sci Technol. 2016;122:82. Aouraghe MA, Mengjie Z, Qiu Y, Fujun X. Low-voltage activating, fast responding electro-thermal actuator based on carbon nanotube film/PDMS composites. Adv Fiber Mater. 2021;3:38. He J, Ren M, Dong L, Wang Y, Wei X, Cui B, Wu Y, Zhao Y, Di J, Li Q. High-temperature-tolerant artificial muscles using poly (p-phenylene benzobisoxazole) composite yarns. Adv Fiber Mater. 2022;4:1256. Hu X, Li J, Li S, Zhang G, Wang R, Liu Z, Chen M, He W, Yu K, Zhai W. Morphology modulation of artificial muscles by thermodynamic-twist coupling. Natl Sci Rev. 2023;10:nwac96. Li S, Zhang R, Zhang G, Shuai L, Chang W, Hu X, Zou M, Zhou X, An B, Qian D. Microfluidic manipulation by spiral hollow-fibre actuators. Nat Commun. 2022;13:1331. Pelrine R, Kornbluh R, Pei Q, Joseph J. High-speed electrically actuated elastomers with strain greater than 100%. Science. 2000;287:836. Ji X, Liu X, Cacucciolo V, Imboden M, Civet Y, El Haitami A, Cantin S, Perriard Y, Shea H. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci Robot. 2019;4:eaaz6451. Wu S, Ze Q, Zhang R, Hu N, Cheng Y, Yang F, Zhao R. Symmetry-breaking actuation mechanism for soft robotics and active metamaterials. ACS Appl Mater Interfaces. 2019;11:41649. Zhang Y, Wang Q, Yi S, Lin Z, Wang C, Chen Z, Jiang L. 4D printing of magnetoactive soft materials for on-demand magnetic actuation transformation. ACS Appl Mater Interfaces. 2021;13:4174. Ju Y, Hu R, Xie Y, Yao J, Li X, Lv Y, Han X, Cao Q, Li L. Reconfigurable magnetic soft robots with multimodal locomotion. Nano Energy. 2021;87: 106169. Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light. Nature. 2003;425:145. Yu Y, Li L, Liu E, Han X, Wang J, Xie Y-X, Lu C. Light-driven core-shell fiber actuator based on carbon nanotubes/liquid crystal elastomer for artificial muscle and phototropic locomotion. Carbon. 2022;187:97. Yue Y, Norikane Y, Azumi R, Koyama E. Light-induced mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures. Nat Commun. 2018;9:3234. Yang M, Wang S-Q, Liu Z, Chen Y, Zaworotko MJ, Cheng P, Ma J-G, Zhang Z. Fabrication of moisture-responsive crystalline smart materials for water harvesting and electricity transduction. J Am Chem Soc. 2021;143:7732. Wei J, Jia S, Guan J, Ma C, Shao Z. Robust and highly sensitive cellulose nanofiber-based humidity actuators. ACS Appl Mater Interfaces. 2021;13:54417. Zakeri R, Zakeri R. Bio inspired general artificial muscle using hybrid of mixed electrolysis and fluids chemical reaction (HEFR). Sci Rep. 2022;12:3627. Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater. 2017;29:1603483. Yu K, Ge Q, Qi HJ. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers. Nat Commun. 2014;5:3066. Meng Y, Jiang J, Anthamatten M. Body temperature triggered shape-memory polymers with high elastic energy storage capacity. J Polym Sci Pt B-Polym Phys. 2016;54:1397. Mao G, Schiller D, Danninger D, Hailegnaw B, Hartmann F, Stockinger T, Drack M, Arnold N, Kaltenbrunner M. Ultrafast small-scale soft electromagnetic robots. Nat Commun. 2022;13:4456. Ni X, Luan H, Kim J-T, Rogge SI, Bai Y, Kwak JW, Liu S, Yang DS, Li S, Li S, Li Z, Zhang Y, Wu C, Ni X, Huang Y, Wang H, Rogers JA. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nat Commun. 2022;13:5576. Yunas J, Mulyanti B, Hamidah I, Mohd Said M, Pawinanto RE, Wan Ali WAF, Subandi A, Hamzah AA, Latif R, Yeop MB. Polymer-based MEMS electromagnetic actuator for biomedical application: a review. Polymers. 2020;12:1184. Mao G, Drack M, Karami-Mosammam M, Wirthl D, Stockinger T, Schwödiauer R, Kaltenbrunner M. Soft electromagnetic actuators. Sci Adv. 2020;6:eabc0251. Morin SA, Shepherd RF, Kwok SW, Stokes AA, Nemiroski A, Whitesides GM. Camouflage and display for soft machines. Science. 2012;337:828. Wang Y, Cui H, Zhao Q, Du X. Chameleon-inspired structural-color actuators. Matter. 2019;1:626. Uh K, Yoon B, Lee CW, Kim J-M. An electrolyte-free conducting polymer actuator that displays electrothermal bending and flapping wing motions under a magnetic field. ACS Appl Mater Interfaces. 2016;8:1289. Gao P, Li J, Shi Q. A hollow polyethylene fiber-based artificial muscle. Adv Fiber Mater. 2019;1:214. Liu Y, Gao M, Mei S, Han Y, Liu J. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators. Appl Phys Lett. 2013;103: 064101. Wissman J, Finkenauer L, Deseri L, Majidi C. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes. J Appl Phys. 2014;116: 144905. He W, Zhang R, Cheng Y, Zhang C, Zhou X, Liu Z, Hu X, Liu Z, Sun J, Wang Y. Intrinsic elastic conductors with internal buckled electron pathway for flexible electromagnetic interference shielding and tumor ablation. Sci China Mater. 2020;63:1318. Liu Z, Fang S, Moura F, Ding J, Jiang N, Di J, Zhang M, Lepró X, Galvao D, Haines C. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science. 2015;349:400. Park S, Baugh N, Shah HK, Parekh DP, Joshipura ID, Dickey MD. Ultrastretchable elastic shape memory fibers with electrical conductivity. Adv Sci. 2019;6:1901579. Hong K, Choe M, Kim S, Lee H-M, Kim B-J, Park S. An Ultrastretchable electrical switch fiber with a magnetic liquid metal core for remote magnetic actuation. Polymers. 2021;13:2407. Lee S, Bhuyan P, Bae KJ, Yu J, Jeon H, Park S. Interdigitating elastic fibers with a liquid metal core toward ultrastretchable and soft capacitive sensors: from 1D fibers to 2D electronics. ACS Appl Electron Mater. 2022;4:6275. Dong C, Leber A, Das Gupta T, Chandran R, Volpi M, Qu Y, Nguyen-Dang T, Bartolomei N, Yan W, Sorin F. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun. 2020;11:3537. Zheng L, Zhu M, Wu B, Li Z, Sun S, Wu P. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci Adv. 2021;7:eabg4041. Do TN, Visell Y. Stretchable, twisted conductive microtubules for wearable computing, robotics, electronics, and healthcare. Sci Rep. 2017;7:1753. Sin D, Singh VK, Bhuyan P, Wei Y, Lee H-M, Kim B-J, Park S. Ultrastretchable thermo- and mechanochromic fiber with healable metallic conductivity. Adv Electron Mater. 2021;7:2100146. Tachibana D, Murakami K, Kozaki T, Matsuda R, Isoda Y, Nakamura F, Isano Y, Ueno K, Fuchiwaki O, Ota H. Ultrafast and highly deformable electromagnetic hydrogel actuators assembled from liquid metal gel fiber. Adv Intell Syst. 2022;4:2100212. Jin Y, Lin Y, Kiani A, Joshipura ID, Ge M, Dickey MD. Materials tactile logic via innervated soft thermochromic elastomers. Nat Commun. 2019;10:4187. Ferdous W, Manalo A, AlAjarmeh OS, Zhuge Y, Mohammed AA, Bai Y, Aravinthan T, Schubel P. Bending and shear behaviour of waste rubber concrete-filled FRP tubes with external flanges. Polymers. 2021;13:2500. Eacock A, Rowland HM, van’t Hof AE, Yung CJ, Edmonds N, Saccheri IJ. Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception. Commun Biol. 2019;2:286. Mutlu S, Yasa O, Erin O, Sitti M. Magnetic resonance imaging-compatible optically powered miniature wireless modular lorentz force actuators. Adv Sci. 2021;8:2002948. Li W, Chen H, Yi Z, Fang F, Guo X, Wu Z, Gao Q, Shao L, Xu J, Meng G, Zhang W. Self-vectoring electromagnetic soft robots with high operational dimensionality. Nat Commun. 2023;14:182.