Công nghệ tổng hợp xanh AgNPs từ chiết xuất sinh học kết hợp với nanofiber polyurethane thúc đẩy quá trình phân hủy quang xúc tác atrazine và hoạt tính kháng khuẩn

Hanaa Mansour1, Samia M. El-signey1, Mohamed Ouf1, El-Refaie S. Kenawy2, Kamel R. Shoueir3
1Department of Chemistry, Kafrelsheikh University, Kafrelsheikh, Egypt
2Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
3Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt

Tóm tắt

Atrazine (ATZ) là một loại thuốc diệt cỏ thường được sử dụng, chứa các hợp chất hữu cơ clo. Dư lượng ATZ di động gây ra những nguy cơ sinh thái đáng kể và có những tác động xấu đến sức khỏe do thành phần ổn định của nó, cho phép nó thẩm thấu vào các nguồn nước ngầm. Trong nghiên cứu này, chúng tôi đã khảo sát việc sử dụng các kỹ thuật thân thiện với môi trường trong việc tổng hợp các hạt nano bạc (AgNPs) tích hợp vào một chất nền rắn như nanofiber polyurethane nhiệt dẻo (TPU) cho quá trình phân hủy quang xúc tác atrazine. Kích thước tinh thể trung bình của AgNPs là 16,4 nm, và tiềm năng zeta là -26,8 mV. AgNPs với các nồng độ khác nhau (0,5–3 mmol) đã được cố định vào nanofiber TPU và được nghiên cứu dưới các tham số thí nghiệm khác nhau, bao gồm pH, liều xúc tác, độ sưng, và nồng độ ban đầu tác động đến tỷ lệ phân hủy ATZ. Việc tải AgNPs đã cải thiện hiệu suất của TPU, cho phép nó hấp thụ nhiều nước hơn (8,6%) do sự gia tăng đường kính nanofiber và tình trạng kết tập sau đó. Tính toán lý thuyết về độ hấp thụ quang học và chỉ số khúc xạ của AgNPs và AgNPs/TPU đã được đánh giá. AgNPs/TPU ở nồng độ thấp (1 mmol) đã loại bỏ ATZ sau 60 phút mà không cần thêm chất kích hoạt. Ngay cả sau bảy lần thử với tổn thất 8,5%, chất xúc tác nanofiber hiện tại vẫn ổn định. Cơ chế phân hủy được khảo sát dựa vào gốc hydroxyl như là thành phần phản ứng chính. AgNPs@TPU đã tấn công lớp lót kháng khuẩn với vùng ức chế đáng kể có đường kính 25,3 ± 3,5 và 23,4 ± 2,2 mm đối với E. coli và S. aureus. Tài liệu mô tả việc sử dụng hỗ trợ nanofiber thân thiện với môi trường và tái tạo với các xúc tác quang để loại bỏ thuốc diệt cỏ từ nước thải dưới ánh sáng nhìn thấy và hiệu quả của nó trong việc chống lại vi khuẩn.

Từ khóa

#Atrazine #AgNPs #TPU #phân hủy quang xúc tác #hoạt tính kháng khuẩn #nước thải

Tài liệu tham khảo

Ajarem JS et al (2022) Benign synthesis of cobalt oxide nanoparticles containing red algae extract: antioxidant, antimicrobial, anticancer, and anticoagulant activity. J Clust Sci 33:717–728 AlSalem HS et al (2022) Physico-chemical and biological responses for hydroxyapatite/ZnO/graphene oxide nanocomposite for biomedical utilization. Mater Chem Phys 283:125988 Shoueir KR et al (2021) Chitosan based-nanoparticles and nanocapsules: overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int J Biol Macromol 167:1176–1197 Shoueir KR (2020) Green microwave synthesis of functionalized chitosan with robust adsorption capacities for Cr (VI) and/or RHB in complex aqueous solutions. Environ Sci Pollut Res 27(26):33020–33031 Shoueir K et al (2020) Thallium and selenite doped carbonated hydroxyapatite: microstructural features and anticancer activity assessment against human lung carcinoma. Ceram Int 46(4):5201–5212 Gao Y et al (2021) Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications. Int J Pharm 600:120465 Abumelha HM et al (2021) Development of mechanically reliable and transparent photochromic film using solution blowing spinning technology for anti-counterfeiting applications. ACS Omega 6(41):27315–27324 Algabry SM et al (2022) Engineering electrospun of in-situ plasmonic AgNPs onto PANI@ PVDF nanofibrous scaffold as back surface support for enhancing silicon solar cells efficiency with the electrical model assessment. Sustain Mater Technol 31:e00380 Shen W et al (2022) Effects of solvents on electrospun fibers and the biological application of different hydrophilic electrospun mats. Mater Today Commun 30:103093 Zhong H et al (2021) Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res 15:787–804 Kumar S et al (2021) Synthesis, characterization, and functional properties of ZnO-based polyurethane nanocomposite for textile applications. Fibers Polym 22(8):2227–2237 Mistry P et al (2021) Fabrication and characterization of starch-TPU based nanofibers for wound healing applications. Mater Sci Eng C 119:111316 Teaima MH et al (2022) Wound healing activities of polyurethane modified chitosan nanofibers loaded with different concentrations of linezolid in an experimental model of diabetes. J Drug Deliv Sci Technol 67:102982 Al Jahdaly BA et al (2021) Selenium nanoparticles synthesized using an eco-friendly method: dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. J Mater Res Technol 11:85–97 Fouda MMG et al (2020) Carboxymethyl cellulose supported green synthetic features of gold nanoparticles: antioxidant, cell viability, and antibacterial effectiveness. Synth Met 269:116553 Gondal M et al (2016) Visible light photocatalytic degradation of herbicide (Atrazine) using surface plasmon resonance induced in mesoporous Ag-WO3/SBA-15 composite. J Mol Catal A: Chem 425:208–216 Shoueir K et al (2019) Tailoring the surface reactivity of plasmonic Au@ TiO2 photocatalyst bio-based chitosan fiber towards cleaner of harmful water pollutants under visible-light irradiation. J Clean Prod 230:383–393 Gopal R et al (2020) Versatile fabrication and characterization of Cu-doped ZrO2 nanoparticles: enhanced photocatalytic and photoluminescence properties. J Mater Sci: Mater Electron 31:7232–7246 Wang J-S et al (2022) Eliminating tetracycline antibiotics matrix via photoactivated sulfate radical-based advanced oxidation process over the immobilized MIL-88A: batch and continuous experiments. Chem Eng J 431:133213 Elavarasan N et al (2022) Synergistic S-Scheme mechanism insights of g-C3N4 and rGO combined ZnO-Ag heterostructure nanocomposite for efficient photocatalytic and anticancer activities. J Alloy Compd 906:164255 Shoueir KR et al (2018) Fenton-like nanocatalyst for photodegradation of methylene blue under visible light activated by hybrid green DNSA@Chitosan@MnFe2O4. Carbohydr Polym 197:17–28 Popov AA et al (2022) Laser-ablative synthesis of ultrapure magneto-plasmonic core-satellite nanocomposites for biomedical applications. Nanomaterials 12(4):649 Wang C et al (2020) Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A (Fe) decorated on cotton bers. Chemosphere 254:126829 El-Desouky N et al (2021) Bio-inspired green manufacturing of plasmonic silver nanoparticles/Degussa using Banana Waste Peduncles: photocatalytic, antimicrobial, and cytotoxicity evaluation. J Market Res 10:671–686 Shoueir K, Mohanty A, Janowska I (2022) Industrial molasses waste in the performant synthesis of few-layer graphene and its Au/Ag nanoparticles nanocomposites. Photocatalytic and supercapacitance applications. J Clean Prod 351:131540 Jiang C et al (2022) A colorimetric sensor based on Glutathione-AgNPs as peroxidase mimetics for the sensitive detection of Thiamine (Vitamin B1). Spectrochim Acta A Mol Biomol Spectrosc 265:120348 Jena B et al (2023) To decipher the phytochemical agent and mechanism for Urginea indica mediated green synthesis of Ag nanoparticles and investigation of its antibacterial activity against Methicillin-resistant Staphylococcus aureus. Environ Res 216:114700 Oni BA et al (2023) Green synthesis of Ag nanoparticles from Argemone mexicana L. leaf extract coated with MOF-5 for the removal of metronidazole antibiotics from aqueous solution. J Environ Manag 342:118161 Song Y et al (2023) Phyto-mediated synthesis of Ag nanoparticles/attapulgite nanocomposites using olive leaf extract: characterization, antibacterial activities and cytotoxicity. Inorg Chem Commun 151:110543 Erenler R et al (2022) Biosynthesis of silver nanoparticles using Origanum majorana L. and evaluation of their antioxidant activity. InorgNano-Met Chem. 52:485–492 Singh P et al (2022) Preparation of thyme oil loaded κ-carrageenan-polyethylene glycol hydrogel membranes as wound care system. Int J Pharm 618:121661 Ben Bakrim W et al (2022) Phytochemical study and antioxidant activity of the most used medicinal and aromatic plants in Morocco. J Essent Oil Re 34:131–141 Danish MSS et al (2022) Green synthesis of silver oxide nanoparticles for photocatalytic environmental remediation and biomedical applications. Metals 12(5):769 Singh S, Mishra P (2022) Bacitracin and isothiocyanate functionalized silver nanoparticles for synergistic and broad spectrum antibacterial and antibiofilm activity with selective toxicity to bacteria over mammalian cells. Mater Sci Eng: C 133 Abdellatif AA et al (2022) Green synthesis of silver nanoparticles incorporated aromatherapies utilized for their antioxidant and antimicrobial activities against some clinical bacterial isolates. Bioinorg Chem Appl 2022:2432758 El-Hefnawy ME et al (2022) Fabrication of nanofibers based on hydroxypropyl starch/polyurethane loaded with the biosynthesized silver nanoparticles for the treatment of pathogenic microbes in wounds. Polymers 14(2):318 Zhu L et al (2022) PVP/highly dispersed AgNPs nanofibers using ultrasonic-assisted electrospinning. Polymers 14(3):599 Pant B et al (2013) Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceram Int 39(6):7029–7035 Maharjan B et al (2017) In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: fabrication, characterization and antimicrobial activities. J Mech Behav Biomed Mater 65:66–76 Al-Jahani GMAM (2021) Thymus vulgaris (thyme) as a natural organic matter to biosynthesis silver nanoparticles and their antibacterial efficiency. Int J Pharm Res Allied Sci 10(1):118–121 Boros B et al (2010) Determination of polyphenolic compounds by liquid chromatography–mass spectrometry in Thymus species. J Chromatogr A 1217(51):7972–7980 Melkamu WW, Bitew LT (2021) Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) JF Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon 7(11):e08459 Shah MZ et al (2021) Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities. Sci Rep 11(1):1–14 Hai ND et al (2022) Phytosynthesis of silver nanoparticles using Mangifera indica leaves extract at room temperature: formation mechanism, catalytic reduction, colorimetric sensing, and antimicrobial activity. Colloids Surf B 220:112974 Ameen F et al (2019) Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and their broad-spectrum antibacterial activity. Bioorg Chem 88:102970 Laguta I et al (2019) Green synthesis of silver nanoparticles using Stevia leaves extracts. Appl Nanosci 9:755–765 Tauc T, Kubelka P, Munk F (2018) Information, S.; Tauc, T. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J Phys Chem Lett 9:6814–6817 Munir MS et al (2022) Photoluminescence study of silver nanoparticles decorated on multiwall carbon nanotubes (MWCNTS) by spectroflourometer. Key Eng Mate 16:153–161 Rauf MA et al (2022) Investigating chaperone like activity of green silver nanoparticles: possible implications in drug development. Molecules 27(3):944 Yao Y et al (2022) Dendronized chitosan-mediated fabrication of Au@ AgNPs with visible light trigger. ACS Sustain Chem Eng 10(26):8265–8274 Chand Kishore et al (2020) Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab J Chem 13:8248–8261 Dawadi S et al (2021) Current research on silver nanoparticles: synthesis, characterization, and applications. J Nanomater 2021:1–23 Saravanakumar K et al (2021) Synthesis, characterization, and cytotoxicity of starch-encapsulated biogenic silver nanoparticle and its improved anti-bacterial activity. Int J Biol Macromol 182:1409–1418 Rudrappa M et al (2022) Plumeria alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line. Nanomaterials 12(3):493 Soto KM et al (2019) Fruit peels waste for the green synthesis of silver nanoparticles with antimicrobial activity against foodborne pathogens. Lwt 103:293–300 Kumar H et al (2020) Fruit extract mediated green synthesis of metallic nanoparticles: a new avenue in pomology applications. Int J Mol Sci 21(22):8458 Lv H et al (2021) AgNPs-incorporated nanofiber mats: relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. Mater Sci Eng, C 118:111331 Hassan AA et al (2021) Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: morphology, cell adhesion, and antibacterial activity. Int J Pharm 593:120143 Avci MO et al (2022) Antibacterial, cytotoxicity and biodegradability studies of polycaprolactone nanofibers holding green synthesized Ag nanoparticles using atropa belladonna extract. J Biomater Sci Polym Ed 33:1157–1180 GüneşÇimen C et al (2022) Enhancement of PCL/PLA electrospun nanocomposite fibers comprising silver nanoparticles encapsulated with Thymus vulgaris L. molecules for antibacterial and anticancer activities. ACS Biomater Sci Eng 8(9):3717–3732 Nguyen TH et al (2022) Green synthesis of a photocatalyst Ag/TiO2 nanocomposite using Cleistocalyx operculatus leaf extract for degradation of organic dyes. Chemosphere 306:135474 Khajeh HG et al (2022) Fabrication of a wound dressing mat based on Polyurethane/Polyacrylic acid containing Poloxamer for skin tissue engineering. Colloids Surf A 633:127891 Vanraes P et al (2015) Decomposition of atrazine traces in water by combination of non-thermal electrical discharge and adsorption on nanofiber membrane. Water Res 72:361–371 Krishnasamy L, Krishna K, Subpiramaniyam S (2022) Photocatalytic degradation of atrazine in aqueous solution using La-doped ZnO/PAN nanofibers. Environ Sci Pollut Res 29:54282–54291 Shaikh W, Chakraborty S, Islam R (2020) Photocatalytic degradation of rhodamine B under UV irradiation using Shorea robusta leaf extract-mediated bio-synthesized silver nanoparticles. Int J Environ Sci Technol 17(4):2059–2072 Wu S et al (2018) Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants. Chem Eng J 353:533–541 Shawky A et al (2020) Visible light-responsive Ag/LaTiO3 nanowire photocatalysts for efficient elimination of atrazine herbicide in water. J Mol Liq 299:112163 Pal J et al (2015) Microwave green synthesis of biopolymer-stabilized silver nanoparticles and their adsorption behavior for atrazine. Appl Water Sci 5:181–190 Alkayal NS, Hussein MA (2019) Photocatalytic degradation of atrazine under visible light using novel Ag@ Mg4Ta2O9 nanocomposites. Sci Rep 9(1):7470 Xu L et al (2013) Photocatalytic degradation of atrazine by H3PW12O40/Ag–TiO2: kinetics, mechanism and degradation pathways. Chem Eng J 232:174–182 El-Shabasy R et al (2019) A green synthetic approach using chili plant supported Ag/Ag2O@ P25 heterostructure with enhanced photocatalytic properties under solar irradiation. Optik 192:162943 Shoueir, Kamel, et al (2018) Fenton-like nanocatalyst for photodegradation of methylene blue under visible light activated by hybrid green DNSA@ Chitosan@ MnFe2O4." Carbohydr Polym 197:17–28 Yang X et al (2013) Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catal 3(3):363–369 Poonia K et al (2022) Photocatalytic degradation aspects of atrazine in water: enhancement strategies and mechanistic insights. J Clean Prod 367:133087 Imelouane B et al (2009) Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from Eastern Morocco. Int J Agric Biol 11(2):205–208 Salleh A et al (2020) The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials 10(8):1566 Mirzajani F et al (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 162(5):542–549 Deng S-P et al (2021) Facile synthesis of long-term stable silver nanoparticles by kaempferol and their enhanced antibacterial activity against Escherichia coli and Staphylococcus aureus. J Inorg Organomet Polym Mater 31(7):2766–2778