Bio-ethanol – the fuel of tomorrow from the residues of today
Tóm tắt
Từ khóa
Tài liệu tham khảo
Farrell, 2006, Ethanol can contribute to energy and environmental goals, Science, 311, 506, 10.1126/science.1121416
Ogier, 1999, Ethanol production from lignocellulosic biomass, Oil Gas Sci Technol, 54, 67, 10.2516/ogst:1999004
Yu, 2004, Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae, Bioresour. Technol., 93, 199, 10.1016/j.biortech.2003.09.016
Sheehan, 2001, The road to bioethanol. A strategic perspective of the US Department of Energy's National Ethanol Program, 2
Fernando, 2006, Biorefineries: current status, challenges, and future direction, Energy Fuels, 20, 1727, 10.1021/ef060097w
Keller, 1996, Integrated bioprocess development, 351
Mosier, 2005, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol., 96, 1986, 10.1016/j.biortech.2005.01.013
Wyman, 2005, Coordinated development of leading biomass pretreatment technologies, Bioresour. Technol., 96, 1959, 10.1016/j.biortech.2005.01.010
Öhgren, K. et al. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam-pretreated corn stover. Bioresour. Technol. (in press) http://www.sciencedirect.com/science/journal/09608524
Söderström, 2005, Separate versus simultaneous saccharification and fermentation of two-step steam pretreated softwood for ethanol production, J. Wood Chem. Technol., 25, 187, 10.1080/02773810500191807
Wingren, 2005, Effect of reduction in yeast and enzyme concentrations in a simultaneous-saccharification-and-fermentation-based bioethanol process – technical and economic evaluation, Appl. Biochem. Biotechnol., 121, 485, 10.1385/ABAB:122:1-3:0485
Schell, 1996, Review of pilot plant programs for bioethanol conversion, 381
Ropars, 1992, Large-scale enzymic hydrolysis of agricultural lignocellulosic biomass Part 1: pretreatment procedures, Bioresour. Technol., 42, 197, 10.1016/0960-8524(92)90023-Q
Gollapalli, 2002, Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw, Appl. Biochem. Biotechnol., 98–100, 23, 10.1385/ABAB:98-100:1-9:23
Varga, 2002, Chemical pretreatments of corn stover for enhancing enzymatic digestibility, Appl. Biochem. Biotechnol., 98–100, 73, 10.1385/ABAB:98-100:1-9:73
van Walsum, 1996, Conversion of lignocellulosics pretreated with liquid hot water to ethanol, Appl. Biochem. Biotechnol., 57–58, 157, 10.1007/BF02941696
Nguyen, 2000, Two-stage dilute acid pretreatment of softwoods, Appl. Biochem. Biotechnol., 84–86, 561, 10.1385/ABAB:84-86:1-9:561
Sassner, 2006, Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content, Enzyme Microb. Technol., 39, 756, 10.1016/j.enzmictec.2005.12.010
Ohgren, 2005, Optimization of steam pretreatment of S02-impregnated corn stover for fuel production, Appl. Biochem. Biotechnol., 121, 1055, 10.1385/ABAB:124:1-3:1055
Tengborg, 2001, Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood, Biotechnol. Prog., 17, 110, 10.1021/bp000145+
Enari, 1987, Enzymic hydrolysis of cellulose: is the current theory of the mechanisms of hydrolysis valid?, Crit. Rev. Biotechnol., 5, 67, 10.3109/07388558709044153
Tengborg, 2001, Reduced inhibition of enzymatic hydrolysis of steam pretreated softwood, Enzyme Microb. Technol., 28, 835, 10.1016/S0141-0229(01)00342-8
Szengyel, 2000, Cellulase production of Trichoderma reesei Rut C 30 using steam-pretreated spruce – hydrolytic potential of cellulases on different substrates, Appl. Biochem. Biotechnol., 84–6, 679, 10.1385/ABAB:84-86:1-9:679
Larsson, 2000, Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae, Appl. Biochem. Biotechnol., 84–86, 617, 10.1385/ABAB:84-86:1-9:617
Dien, 2003, Bacteria engineered for fuel ethanol production: current status, Appl. Microbiol. Biotechnol., 63, 258, 10.1007/s00253-003-1444-y
Jeffries, 2006, Engineering yeasts for xylose metabolism, Curr. Opin. Biotechnol., 17, 1, 10.1016/j.copbio.2006.05.008
Desai, 2004, Cloning of the l-lactate dehydrogenase gene and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485, Appl. Microbiol. Biotechnol., 65, 600, 10.1007/s00253-004-1575-9
Hahn-Hägerdal, 1994, An interlaboratory comparison of the performance of ethanol-producing microorganisms in a xylose-rich acid hydrolysate, Appl. Microbiol. Biotechnol., 41, 62
Ingram, 1987, Genetic engineering of ethanol production in Escherichia coli, Appl. Environ. Microbiol., 53, 2420, 10.1128/AEM.53.10.2420-2425.1987
Burchhardt, 1992, Conversion of xylan to ethanol by ethanologenic strains of Escherichia coli and Klebsiella oxytoca, Appl. Environ. Microbiol., 58, 1128, 10.1128/AEM.58.4.1128-1133.1992
Kötter, 1993, Xylose fermentation by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 38, 776, 10.1007/BF00167144
Walfridsson, 1996, Ethanolic fermentation of xylose with Saccharomyces cerevisiae harbouring the Thermus thermophilus xylA gene which expresses an active xylose (glucose) isomerase, Appl Environ Microb, 62, 4648, 10.1128/AEM.62.12.4648-4651.1996
Kuyper, 2003, High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?, FEMS Yeast Res., 4, 69, 10.1016/S1567-1356(03)00141-7
Öhgren, K. et al. (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fibre content with Saccharomyces cerevisiae TMB3400. J Biotechnol, In press, Available online May, 12.
Karhumaa, 2006, High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 10.1007/s00253-006-0575-3
Zhang, 1995, Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis, Science, 267, 240, 10.1126/science.267.5195.240
Lindsay, 1995, Improved strains of recombinant Escherichia coli for ethanol production from sugar mixtures, Appl. Microbiol. Biotechnol., 43, 70, 10.1007/BF00170625
Mohagheghi, 2002, Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101, Appl. Biochem. Biotechnol., 98–100, 885, 10.1385/ABAB:98-100:1-9:885
McMillan, 1996, Arabinose utilization by xylose-fermenting yeasts and fungi, Appl. Biochem. Biotechnol., 45–46, 569
Dien, 1996, Screening for l-arabinose fermenting yeasts, Appl. Biochem. Biotechnol., 57–58, 233, 10.1007/BF02941704
Becker, 2003, A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol, Appl. Environ. Microbiol., 69, 4144, 10.1128/AEM.69.7.4144-4150.2003
Richard, 2003, Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway, FEMS Yeast Res, 3, 185, 10.1016/S1567-1356(02)00184-8
Karhumaa, 2006, Co-utilisation of l-arabinose and d-xylose by laboratory and industrial Saccharomyces cerevisiae strains, Microb Cell Factor, 5, 8, 10.1186/1475-2859-5-18
Palmqvist, 2000, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition, Bioresour. Technol., 74, 25, 10.1016/S0960-8524(99)00161-3
Larsson, 1999, Comparison of different methods for the detoxification of lignocelluloase hydrolyzates of spruce, Appl. Biochem. Biotechnol., 77–79, 91, 10.1385/ABAB:77:1-3:91
Nilvebrant, 2003, Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates, Appl. Biochem. Biotechnol., 105–108, 615, 10.1385/ABAB:107:1-3:615
Schell, 2004, A bioethanol process development unit: initial operating experiences and results with a corn fibre feedstock, Bioresour. Technol., 91, 179, 10.1016/S0960-8524(03)00167-6
Kadam, 2000, Softwood forest thinnings as a biomass source for ethanol production: A feasibility study for California, Biotechnol. Prog., 16, 947, 10.1021/bp000127s
Martin, 2003, Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors, Enz. Microbial. Technol., 32, 386, 10.1016/S0141-0229(02)00310-1
Sarvari Horvath, 2003, Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats, Appl. Environ. Microbiol., 69, 4076, 10.1128/AEM.69.7.4076-4086.2003
Taherzadeh, 2000, Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid, J. Biosci. Bioeng., 90, 374, 10.1016/S1389-1723(01)80004-9
Taherzadeh, 2000, On-line control of fed-batch fermentation of dilute-acid hydrolyzates, Biotechnol. Bioeng., 69, 330, 10.1002/1097-0290(20000805)69:3<330::AID-BIT11>3.0.CO;2-Q
Petersson, 2006, A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance, Yeast, 23, 455, 10.1002/yea.1370
von Sivers, 1996, Ethanol from lignocellulosics: A review of the economy, Bioresour. Technol., 56, 131, 10.1016/0960-8524(96)00018-1
Lynd, 1996, Likely features and costs of mature biomass ethanol technology, Appl Biochem. Biotechnol., 57–58, 741, 10.1007/BF02941755
Wooley, R.J. et al. (1999) Lignocellulosic biomass to ethanol processing design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. National Renewable Energy Laboratory Technical Report NREL/TP-510-26157 (http://www.nrel.gov/docs/fy99osti/26157.pdf)
Aden, A. et al. (2002) Lignocellulosic biomass to ethanol processing design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory Technical Report NREL/TP-510-32438 (http://www.nrel.gov/docs/fy02osti/32438.pdf)
Alkasrawi, 2002, Recirculation of process streams in fuel ethanol production from softwood based on simultaneous saccharification and fermentation, Appl. Biochem. Biotechnol., 98–100, 849, 10.1385/ABAB:98-100:1-9:849
Takagi, M. et al. (1977) A method for production of alcohol direct from cellulose using cellulase and yeast. In Proceedings of the Bioconversion Symposium IIT (Delhi) pp. 551–571
Wright, 1988, Simultaneous saccharification and fermentation of lignocellulose: process evaluation, Appl. Biochem. Biotechnol., 18, 75, 10.1007/BF02930818
Lynd, 2005, Consolidated bioprocessing of cellulosic biomass: an update, Curr. Opin. Biotechnol., 16, 577, 10.1016/j.copbio.2005.08.009
Ångpanneföreningen (1994) IPK System study – techno/economic reviews of process combinations of ethanol processes and other relevant industrial processes. Report P23332-1, NUTEK, Stockholm, Sweden
Hahn-Hägerdal, 2004, Microbial pentose metabolism, Appl. Biochem. Biotechnol., 113–116, 1207, 10.1385/ABAB:116:1-3:1207
O’Brien, 2004, Ethanol recovery from corn fiber hydrolysate fermentations by pervaporation, Bioresour. Technol., 92, 15, 10.1016/j.biortech.2003.08.003
Saha, 2005, Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol, Biotechnol. Prog., 21, 816, 10.1021/bp049564n
Mohaghegi, 2004, Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate, Biotechnol. Lett., 26, 321, 10.1023/B:BILE.0000015451.96737.96
Nigam, 2001, Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis, J. Biotechnol., 87, 17, 10.1016/S0168-1656(00)00385-0