Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hydrogels sinh học tổng hợp từ cellulose và cao su tự nhiên lưu hóa với các lớp kết nối nano cho vật liệu giữ nước tăng cường
Tóm tắt
Các hydrogel sinh học tổng hợp từ cellulose và cao su tự nhiên lưu hóa (VNR) đã được chuẩn bị thành công bằng phương pháp đảo pha. Quá trình chuẩn bị hydrogel từ cellulose và VNR được thực hiện bằng cách trộn dung dịch cellulose trong 6% LiCl trong N,N-dimethylacetamide với VNR trong toluene ở mức tải trọng VNR 10, 15 và 20 wt%. Dung dịch sau đó được tiếp xúc với hơi ethanol trong 1 ngày. Các composite cellulose-VNR ở các mức VNR 10-20 wt% cho thấy khả năng gia cố tuyệt vời, thể hiện qua các tính chất tính đàn hồi và cơ học cao hơn, mặc dù các hydrogel composite vẫn giữ được một lượng nước lớn (khoảng 870–2400%). Cấu trúc hình thái kích thước nano của các hydrogel composite cho thấy VNR được phân bố một cách thô ráp trong môi trường cellulose tạo thành một lớp kết nối giữa các thành phần cellulose và VNR, trong đó VNR được bao quanh bởi môi trường cellulose sợi. Sự kết nối giữa VNR kỵ nước và miền cellulose ưa nước ở các mức tải trọng VNR cao hơn đã nâng cao các tính chất cơ học và độ đàn hồi của các hydrogel sinh học tổng hợp.
Từ khóa
#hydrogel sinh học #cellulose #cao su tự nhiên lưu hóa #vật liệu giữ nước #compositeTài liệu tham khảo
Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28
Ibrahim MM, Abd-Eladl M, Abou-Baker NH (2015) Lignocellulosic biomass for the preparation of cellulose-based hydrogel and its use for optimizing water resources in agriculture. J Appl Polym Sci. https://doi.org/10.1002/app.42652
Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2(1):1–8
Nakasone K, Ikematsu S, Kobayashi T (2015) Biocompatibility evaluation of cellulose hydrogel film regenerated from sugar cane bagasse waste and its in vivo behavior in mice. Ind Eng Chem Res 55:30–37
Nakasone K, Kobayashi T (2016) Effect of pre-treatment of sugarcane bagasse on the cellulose solution and application for the cellulose hydrogel films. Polym Adv Technol 27:973–980
Saha P, Chowdhury S, Roy D, Adhikari B, Kim JK, Thomas S (2016) A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites. Polym Bull 73:587–620
Li DF, Ye YX, Li DR, Li XY, Mu CD (2016) Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin-PEG composite hydrogel fibers for wound dressings. Carbohyd Polym 137:508–514
Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R (2014) Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A 102(5):1568–1579
Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma SW, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164(3):291–298
Cheng YM, Lu JT, Liu SL, Zhao P, Lu GZ, Chen JH (2014) The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohyd Polym 107:57–64
Kim MH, An S, Won K, Kim HJ, Lee SH (2012) Entrapment of enzymes into cellulose-biopolymer composite hydrogel beads using biocompatible ionic liquid. J Mol Catal B Enzym 75:68–72
Park S, Kim SH, Kim JH, Yu H, Kim HJ, Yang YH, Kim H, Kim YH, Ha SH, Lee SH (2015) Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase. J Mol Catal B Enzym 119:33–39
Lacin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27
Barros SC, da Silva AA, Costa DB, Costa CM, Lanceros-Mendez S, Maciavello MNT, Ribelles JLG, Sentanin F, Pawlicka A, Silva MM (2015) Thermal mechanical behaviour of chitosan-cellulose derivative thermoreversible hydrogel films. Cellulose 22(3):1911–1931
Gan S, Zakaria S, Chia CH, Padzil FNM, Ng P (2015) Effect of hydrothermal pretreatment on solubility and formation of kenaf cellulose membrane and hydrogel. Carbohyd Polym 115:62–68
Tovar-Carrillo KL, Tagaya M, Kobayashi T (2013) Bamboo fibers elaborating cellulose hydrogel films for medical applications. J Mater Sci Chem Eng C 1:7–12
Mohammed N, Grishkewich N, Berry R, Tam K (2015) Cellulose nanocrystal-alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22(6):3725–3738
Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633
Wang Y, Wang W, Shi X, Wang A (2013) Enhanced swelling and responsive properties of an alginate-based superabsorbent hydrogel by sodium p-styrenesulfonate and attapulgite nanorods. Polym Bull 70:1181–1193
Baysal K, Aroguz AZ, Adiguzel Z, Baysal BM (2013) Chitosan/alginate crosslinked hydrogels: preparation, characterization and application for cell growth purposes. Int J Biol Macromol 59:342–348
Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Delivery Rev 62:83–99
Wang N, Wu XS (1997) Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm Dev Technol 2(2):135–142
Shen X, Shashina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75
Isobe N, Nishiyama Y, Kimura S, Wada M, Kuga S (2014) Origin of hydrophilicity of cellulose hydrogel from aqueous LiOH/urea solvent coagulated with alkyl alcohols. Cellulose 21(2):1043–1050
Tovar-Carrillo KL, Sueyoshi SS, Tagaya M, Kobayashi T (2013) Fibroblast compatibility on scaffold hydrogels prepared from agave tequilana weber bagasse for tissue regeneration. Ind Eng Chem Res 52:11607–11613
Tovar-Carrillo KL, Nakasone K, Sugita S, Tagaya M, Kobayashi T (2014) Effects of sodium hypochlorite on agave tequilana weber bagasse fibers used to elaborate cyto and biocompatible hydrogel films. Mater Sci Eng C 42:808–815
Nakasone K, Kobayashi T (2016) Cytocompatible cellulose hydrogels containing trace lignin. Mater Sci Eng C 64:269–277
Boonmahithisud A, Nakajima L, Nguyen KD, Kobayashi T (2017) Composite effect of silica nanoparticle on the mechanical properties of cellulose-based hydrogels derived from cottonseed hulls. J Appl Polym Sci. https://doi.org/10.1002/app.44557
Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273
Zhang Y, Huang R, Peng S, Ma Z (2015) MWCNTs/cellulose hydrogels prepared from NaOH/urea aqueous solution with improved mechanical properties. J Chem. https://doi.org/10.1155/2015/413497
Yang J, Han C-R, Duan J-F, Xu F, Sun R-C (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. Appl Mater Interfaces 5(8):3199–3207
Lorenz O, Scheele W (1955) Studies of the vulcanization of elastic high polymers. VI. The vulcanization of natural rubber with benzoyl peroxide. Part 1. Rubber Chem Technol 8(11):901–916
Scheele W, Rohde E (1964) Vulcanization of elastomers. 47. Vulcanization of natural rubber and polybutadiene with benzoyl peroxide. Rubber Chem Technol 17:768–784
Trovatti E, Capote TSO, Scarel-Caminaga RM, Carvalho AJF, Gandini A (2015) Development and characterization of natural rubber and bacterial cellulose-sponge composites. World J Pharm Pharm Sci 4(7):220–235
Martins AF, Visconte LLY, Nunes RCR (2002) Evaluation of natural rubber and cellulose II compositions by curing and mechanical properties. Raw Mater Appl 55:637–641
Trovatti E, Carvalho AJF, Ribeiro SJL, Gandini A (2013) Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers. Biomacromol 14:2667–2674
Abraham E, Blbi PA, Deepa B, Jyotishkumar P, Pothen LA, Narine SS, Thomas S (2012) X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polym Degrad Stab 97:2378–2387
Manaila E, Stelescu MD, Cracium G, Surdu L (2014) Effects of benzoyl peroxide on some properties of composites based on hemp and natural rubber. Polym Bull 71:2001–2022
Datta J, Wloch M (2017) Preparation, morphology and properties of natural rubber composites filled with untreated short jute fibres. Polym Bull 74:763–782
Compagnon P, Delalande A (1947) The action of benzoyl peroxide on natural rubber in solution. Rubber Chem Technol 24(1):60–65
Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd Polym 86:1291–1299
Ibrahim S, Daik R, Abdullah I (2014) Functionalization of liquid natural rubber via oxidative degradation of natural rubber. Polymer 6:2928–2941
Jiang H, Tovar-Carrillo K, Kobayashi T (2016) Ultrasound stimulated release of mimosa medicine from cellulose hydrogel matrix. Ultrason Sonochem 32:398–406
Li K, Noguchi S, Kobayashi T (2016) Ultrasound-responsive behavior of gelatinous ionic liquid/poly(vinyl alcohol) composites. Ind Eng Chem Res 55:9915–9924