Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation

Bioactive Materials - Tập 9 - Trang 1-14 - 2022
Jie Sun1, Yingkang Huang1, Huan Zhao1, Junjie Niu1, Xuwei Ling1, Can Zhu1, Lin Wang1, Huilin Yang1, Zhilu Yang2,3, Guoqing Pan4, Qin Shi1
1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, 899 Pinghai, Suzhou, Jiangsu, 215031, China
2Affiliated Dongguan Hospital, Southern Medical University, No. 3 Wandao Road, Dongguan, Guangdong, 523059, China
3Guangdong Provincial Key Laboratory of Shock and Microcirculation, No. 1023 Shatai Road, Guangzhou, Guangdong, 510080, China
4Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bai, 2020, Biomimetic osteogenic peptide with mussel adhesion and osteoimmunomodulatory functions to ameliorate interfacial osseointegration under chronic inflammation, Biomaterials, 255, 10.1016/j.biomaterials.2020.120197

Yamada, 1988, The reaction of peri-implant tissues to titanium alloy and apatite-coated implants during the healing phase, Nihon Shishubyo Gakkai kaishi, 30, 1021, 10.2329/perio.30.1021

Kim, 2019, General review of titanium toxicity, Int. J. Implant Dent., 5, 10, 10.1186/s40729-019-0162-x

Jacobi-Gresser, 2013, Genetic and immunological markers predict titanium implant failure: a retrospective study, Int. J. Oral Maxillofac. Surg., 42, 537, 10.1016/j.ijom.2012.07.018

Bianco, 1996, Local accumulation of titanium released from a titanium implant in the absence of wear, J. Biomed. Mater. Res., 31, 227, 10.1002/(SICI)1097-4636(199606)31:2<227::AID-JBM9>3.0.CO;2-P

Guo, 2019, Efficient inhibition of wear-debris-induced osteolysis by surface biomimetic engineering of titanium implant with a mussel-derived integrin-targeting peptide, Adv Biosyst, 3, 10.1002/adbi.201800253

Becker, 2020, Single-cell adhesion of human osteoblasts on plasma-conditioned titanium implant surfaces in vitro, J. Mech. Behav. Biomed. Mater., 109, 10.1016/j.jmbbm.2020.103841

Souza, 2019, Nano-scale modification of titanium implant surfaces to enhance osseointegration, Acta Biomater., 94, 112, 10.1016/j.actbio.2019.05.045

Jemat, 2015, Surface modifications and their effects on titanium dental implants, BioMed Res. Int., 10.1155/2015/791725

Chen, 2021, Fusion peptide engineered "statically-versatile" titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration, Biomaterials, 264, 10.1016/j.biomaterials.2020.120446

Haimov, 2017, Bone morphogenetic protein coating on titanium implant surface: a systematic review, J. Oral Maxillofac. Res., 8, e1, 10.5037/jomr.2017.8201

Zouani, 2010, Differentiation of pre-osteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides, Biomaterials, 31, 8245, 10.1016/j.biomaterials.2010.07.042

Gan, 2018, Chitosan/biphasic calcium phosphate scaffolds functionalized with BMP-2-encapsulated nanoparticles and RGD for bone regeneration, J. Biomed. Mater. Res., 106, 2613, 10.1002/jbm.a.36453

Ehrensberger, 2020, Electrochemical methods to enhance osseointegrated prostheses, Biomed. Eng. Lett., 10, 17, 10.1007/s13534-019-00134-8

Wadhwani, C. P. K., Schoenbaum, T., King, K. E. & Chung, K. H. Techniques to optimize color esthetics, bonding, and peri-implant tissue Health with titanium implant abutments. Comp. Cont. Educ. Dent. 39, 110-119 (2018).

Jalali, 2020, Enhanced osteogenesis properties of titanium implant materials by highly uniform mesoporous thin films of hydroxyapatite and titania intermediate layer, J. Mater. Sci. Mater. Med., 31, 114, 10.1007/s10856-020-06450-1

de Jonge, 2008, Organic-inorganic surface modifications for titanium implant surfaces, Pharmaceut. Res., 25, 2357, 10.1007/s11095-008-9617-0

Dayer, 2006, Low protein intake is associated with impaired titanium implant osseointegration, J. Bone Miner. Res. : Off. J. Am. Soc. Bone Min. Res., 21, 258, 10.1359/JBMR.051009

Park, 2014, Modified titanium implant as a gateway to the human body: the implant mediated drug delivery system, BioMed Res. Int., 10.1155/2014/801358

Wang, 2021, Surface bioengineering of diverse orthopaedic implants with optional functions via bioinspired molecular adhesion and bioorthogonal conjugations, Biomed. Mater., 16, 10.1088/1748-605X/abcf02

Chen, X., Gao, Y., Wang, Y. & Pan, G. Mussel-inspired peptide mimicking: an emerging strategy for surface bioengineering of medical implants. Smart Mater. Med. 2, 26-37, doi:10.1016/j.smaim.2020.10.005(2021).

Hou, 2020, Biomaterial surface modification for underwater adhesion, Smart Mater. Med., 1, 77, 10.1016/j.smaim.2020.07.003

Zhang, 2019, Mussel-inspired dopamine-Cu(II) coatings for sustained in situ generation of nitric oxide for prevention of stent thrombosis and restenosis, Biomaterials, 194, 117, 10.1016/j.biomaterials.2018.12.020

Pan, 2016, Biomimetic design of mussel-derived bioactive peptides for dual-functionalization of titanium-based biomaterials, J. Am. Chem. Soc., 138, 15078, 10.1021/jacs.6b09770

Zhao, 2018, Mussel-inspired peptide coatings on titanium implant to improve osseointegration in osteoporotic condition, ACS Biomater. Sci. Eng., 4, 2505, 10.1021/acsbiomaterials.8b00261

Yang, 2020, Bioclickable and mussel adhesive peptide mimics for engineering vascular stent surfaces, Proc. Natl. Acad. Sci. U.S.A., 117, 16127, 10.1073/pnas.2003732117

Kim, 2015, A bioorthogonal reaction of N-oxide and boron reagents, Angew. Chem., 54, 15777, 10.1002/anie.201508861

Yang, 2020, Endothelium-Mimicking multifunctional coating modified cardiovascular stents via a stepwise metal-catechol-(amine) surface engineering strategy, Research (Wash D C)

Bilem, 2016, RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells, Acta Biomater., 36, 132, 10.1016/j.actbio.2016.03.032

Bilem, 2018, The spatial patterning of RGD and BMP-2 mimetic peptides at the subcellular scale modulates human mesenchymal stem cells osteogenesis, J. Biomed. Mater. Res., 106, 959, 10.1002/jbm.a.36296

Moore, 2011, Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients, Acta Biomater., 7, 2091, 10.1016/j.actbio.2011.01.019

Park, 2010, Osteogenic differentiation of human mesenchymal stem cells using RGD-modified BMP-2 coated microspheres, Biomaterials, 31, 6239, 10.1016/j.biomaterials.2010.05.002

Wei, 2018, The immunomodulatory role of BMP-2 on macrophages to accelerate osteogenesis, Tissue Eng. A, 24, 584, 10.1089/ten.tea.2017.0232

Shu, 2018, The immunomodulatory role of sulfated chitosan in BMP-2-mediated bone regeneration, Biomater Sci, 6, 2496, 10.1039/C8BM00701B

Shen, 2021, Improved BMP2-CPC-stimulated osteogenesis in vitro and in vivo via modulation of macrophage polarization, Mater Sci Eng C Mater Biol Appl, 118, 10.1016/j.msec.2020.111471

Durham, 2020, rhBMP2 alone does not induce macrophage polarization towards an increased inflammatory response, Mol. Immunol., 117, 94, 10.1016/j.molimm.2019.10.021

Liu, 2021, Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration, Biomaterials, 276, 10.1016/j.biomaterials.2021.121037

Qiu, 2019, Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy, Biomaterials, 207, 10, 10.1016/j.biomaterials.2019.03.033

Li, 2021, Rational integration of defense and repair synergy on PEEK osteoimplants via biomimetic peptide clicking strategy, Bioact. Mater.

Zhang, 2020, Bioinspired adhesive and antibacterial microneedles for versatile transdermal drug delivery, Research (Wash D C)

Sunarso, 2016, A superhydrophilic titanium implant functionalized by ozone gas modulates bone marrow cell and macrophage responses, J. Mater. Sci. Mater. Med., 27, 127, 10.1007/s10856-016-5741-2

Gongadze, 2011, Adhesion of osteoblasts to a nanorough titanium implant surface, Int. J. Nanomed., 6, 1801

Dusad, 2013, Titanium implant with nanostructured zirconia surface promotes maturation of peri-implant bone in osseointegration, Proc. IME H J. Eng. Med., 227, 510, 10.1177/0954411913479300

Chen, 2020, Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-kappaB signaling pathway, Bioact Mater, 5, 880, 10.1016/j.bioactmat.2020.05.004

Gu, 2017, Macrophages and bone inflammation, J. Orthopaed.Transl., 10, 86, 10.1016/j.jot.2017.05.002