Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials

Springer Science and Business Media LLC - Tập 29 Số 6 - Trang 8665-8683 - 2022
Bárbara Maria Ribeiro Guimarães1, Mário Vanoli Scatolino2, Maria Alice Martins3, Saulo Rocha Ferreira4, Lourival Marin Mendes1, José Tarcísio Lima1, Mário Guimarães5, Gustavo Henrique Denzin Tonoli1
1Department of Forest Sciences, Federal University of Lavras (UFLA), Lavras, Brazil
2Department of Production Engineering, State University of Amapá - UEAP, Macapá, Brazil
3Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA Instrumentação, São Carlos, Brazil
4Department of Engineering, Federal University of Lavras (UFLA), Lavras, Brazil
5Department of Electromechanical, Federal Center for Technological Education of Minas Gerais – CEFET, Araxá, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

ABNT - Brazilian Association of Technical Standards NBR 13999 (2003) Paper, board, pulps and wood—determination of residue (ash) on ignition at 525°C

ABNT - Brazilian Association of Technical Standards NBR 7989 (2010) Pulp and wood—determination of acid-insoluble lignin. Brazilian Association of Technical Standards

Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86:1468–1475. https://doi.org/10.1016/j.carbpol.2011.06.034

Abral H, Ariksa J, Mahardika M, Handayani D, Aminah I, Sandrawati N, Sugiarti E, Muslimin AN, Rosanti SD (2020) Effect of heat treatment on thermal resistance, transparency and antimicrobial activity of sonicated ginger cellulose film. Carbohyd Polym 240:116287. https://doi.org/10.1016/j.carbpol.2020.116287

Alemdar A, Sain M (2008) Isolation and characterization of nanofibrils from agricultural residues - wheat straw and soy hulls. Bioresour Technol 99:1664–1167. https://doi.org/10.1016/j.biortech.2007.04.029

Alves ICN, Gomide JL, Colodette JL, Silva HD (2011) Technological characterization of Eucalyptus benthamii wood for kraft pulp production. Ciência Florestal 21:167–174. https://doi.org/10.5902/198050982759

ASTM - American Society for Testing and Materials D1746-03 (2003) Standard test method for transparency of plastic sheeting

ASTM - American Society for Testing and Materials D882-12 (2012) Standard test method for tensile properties of thin plastic sheeting

ASTM – American Society for Testing and Materials E96-00 (2000) Standard test methods for water vapor transmission of materials

Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043

Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci - Polym Rev 44:231–274. https://doi.org/10.1081/MC-200029326

Bardi MAG, Rosa DS (2007) Evaluation of biodegradation in simulated soil of poli (ε-caprolactone), cellulose acetate and its blends. Rev Bras Aplic Vácuo 26:43–47

Bianco F, Şenol H, Papirio S (2021) Enhanced lignocellulosic component removal and biomethane potential from chestnut shell by a combined hydrothermal–alkaline pretreatment. Sci Total Environ 762:144178. https://doi.org/10.1016/j.scitotenv.2020.144178

Browning BL (1963) The chemistry of wood. Interscience, New York

Bufalino L, de Sena Neto AR, Tonoli GHD, de Souza FA, Costa TG, Marconcini JM, Colodette JL, Labory CRG, Mendes LM (2015) How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 22:3657–3672. https://doi.org/10.1007/s10570-015-0771-3

Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20:2863–2875. https://doi.org/10.1007/s10570-013-0036-y

Chandra E, Renu R (1998) Biodegradable polymers. Progr Polym Sci 23:1273–1335

Chen W, Abe K, Uetani K, Yu H, Liu Y, Yano H (2014) Individual cotton cellulose nanofibrils: pretreatment and fibrillation technique. Cellulose 21:1517–1528. https://doi.org/10.1007/s10570-014-0172-z

Desmaisons J, Boutonnet E, Rueff M, Dufresne A, Bras J (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohyd. Polym. 174:318–329. https://doi.org/10.1016/j.carbpol.2017.06.032

Dias MC, Mendonça MC, Damásio RAP, Zidanes UL, Mori FA, Ferreira SR, Tonoli GHD (2019) Influence of hemicellulose content of Eucalyptus and Pinus fibers on the grinding process for obtaining cellulose micro/nanofibrils. Holzforsch 73:1035–1046. https://doi.org/10.1515/hf-2018-0230

do Lago RC, de Oliveira ALM, Dias MC, de Carvalho EEN, Tonoli GHD, Vilas Boas EVB (2020) Obtaining cellulosic nanofibrils from oat straw for biocomposite reinforcement: mechanical and barrier properties. Ind Crop Prod 148:112264. https://doi.org/10.1016/j.indcrop.2020.112264

do Prado NRT, Raabe J, Mirmehdi S, Hugen LN, Lima LC, Ramos ALS, Guimarães Jr M, Tonoli GHD (2018) Strength improvement of hydroxypropyl methylcellulose/starch films using cellulose nanocrystals. Cerne 23:423–434. https://doi.org/10.1590/01047760201723042303

Doi Y, Kanesawa Y, Tanahashi N, Kumagai Y (1992) Biodegradation of microbial polyesters in the marine environment. Polym Degrad Stab 36:173–177. https://doi.org/10.1016/0141-3910(92)90154-W

Dufresne, A., 2012. Nanocellulose: from nature to high performance tailored materials. Berlin: Walter De Gruyter Incorporated. 460p

Durães AFS, Moulin JC, Dias MC, Mendonça MC, Damásio RAP, Thygesen LG, Tonoli GHD (2020) Influence of chemical pretreatments on plant fiber cell wall and their implications on the appearance of fiber dislocations. Holzforsch. https://doi.org/10.1515/hf-2019-0237(online)

Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohyd Polym 80:852–859. https://doi.org/10.1016/j.carbpol.2009.12.043

Fakhouri FM, Fontes LCB, Gonçalves PVM, Milanez CR, Steel CJ, Collares-Queiroz FP (2007) Films and edible coatings based on native starches and gelatin in the conservation and sensory acceptance of Crimson grapes. Ciênc Tecnol Alim 27:369–375. https://doi.org/10.1590/S0101-20612007000200027

Fang Z, Zhu H, Yuan Y, Ha D, Zhu S, Preston C, Chen Q, Li Y, Han X, Lee S et al (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14:765–773

Flemming HC (1998) Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polym Degrad Stab 59:309–315. https://doi.org/10.1016/S0141-3910(97)00189-4

Fonseca CS, Scatolino MV, Silva LE, Martins MA, Guimarães M Jr, Tonoli GHD (2021) Valorization of jute biomass: performance of fiber–cement composites extruded with hybrid reinforcement (fibers and nanofibrils). Waste Biomass Valor. https://doi.org/10.1007/s12649-021-01394-1

Frone AN, Panaitescu DM, Donescu D (2011) Some aspects concerning the isolation of cellulose micro- and nano- fibers. UPB Sci Bullet 73:133–152

Gazzotti S, Rampazzo R, Hakkarainen M, Bussini D, Ortenzi MA, Farina H, Lesma G, Silvani A (2019) Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: an in situ approach. Comp Sci Technol 171:94–102. https://doi.org/10.1016/j.compscitech.2018.12.015

Gontard N, Duchez C, Cuq J-L, Guilbert S (1994) Edible composite films of wheat gluten and lipids: Water vapor permeability and other physical properties. Int J Food Sci Technol 29:39–50. https://doi.org/10.1111/j.1365-2621.1994.tb02045.x

Guimarães M Jr, Botaro VR, Novack KM, Teixeira FG, Tonoli GHD (2015) Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind Crop Prod 70:72–83. https://doi.org/10.1016/j.indcrop.2015.03.014

Guimarães M Jr, Teixeira FG, Tonoli GHD (2018) Effect of the nano-fibrillation of bamboo pulp on the thermal, structural, mechanical and physical properties of nanocomposites based on starch/poly (vinyl alcohol) blend. Cellulose. 25:1–27. https://doi.org/10.1007/s10570-018-1691-9

Halász K, Hosakun Y, Csóka L (2015, 2015) Reducing water vapor permeability of poly (lactic acid) film and bottle through layer-by-layer deposition of green-processed cellulose nanocrystals and chitosan. Int J Polym Sci.:6p. https://doi.org/10.1155/2015/954290

Haverty D, Dussan K, Piterina AV, Leahy JJ, Hayes MHB (2012) Autothermal, single-stage, performic acid pretreatment of Miscanthus × giganteus for the rapid fractionation of its biomass components into a lignin/hemicellulose-rich liquor and a cellulase-digestible pulp. Bioresour Technol 109:173–177. https://doi.org/10.1016/j.biortech.2012.01.007

Hietala M, Samuelsson E, Niinimaki J, Oksman K (2011) The effect of pre-softened wood chips on wood fibre aspect ratio and mechanical properties of wood–polymer composites. Compos A Appl Sci Manuf 42:2110–2116. https://doi.org/10.1016/j.compositesa.2011.09.021

Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. https://doi.org/10.1126/science.1137016

Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113. https://doi.org/10.1021/nn304407r

Iwamoto S, Lee SH, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73–76. https://doi.org/10.1038/pj.2013.64

Karki DB, Yadav KC, Khanal H, Bhattarai P, Koirala B, Khatri SB (2020) Analysis of biodegradable films of starch from potato waste. Asian Food Sci J 14:28–40. https://doi.org/10.9734/AFSJ/2020/v14i330132

Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohyd Polym 82:337–345. https://doi.org/10.1016/j.carbpol.2010.04.063

Kennedy F, Phillips GO, Willians PA (1987) Wood and cellulosics, industrial utilization, biotechnology, structure and properties. Ellis Horwood, Chichester

Kliestik T, Misankova M, Valaskova K, Svabova L (2018) Bankruptcy prevention: new effort to reflect on legal and social changes. Sci Eng Ethics 24:791–803. https://doi.org/10.1007/s11948-017-9912-4

Kubálek J, Cámská D, Strouhal J (2017) Personal bankruptcies from macroeconomic perspective. Intl J Entrep Knowl 5:78–88. https://doi.org/10.1515/ijek-2017-0013

Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90:735–764. https://doi.org/10.1016/j.carbpol.2012.05.026

Li Y, Fu Q, Rojas R, Yan M, Lawoko M, Berglund L (2017) Lignin-retaining transparent wood. Chem Sus Chem 10:3445–3451. https://doi.org/10.1002/cssc.201701089

Liu D, Yuan X, Bhattacharyya D (2012) The effects of cellulose nanowhiskers on electrospun poly (lactic acid) nanofibres. J Mater Sci 47:3159–3165. https://doi.org/10.1007/s10853-011-6150-z

Long L, Tian D, Hu J, Wang F, Saddler J (2017) A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation. Bioresour Technol 243:898–904. https://doi.org/10.1016/j.biortech.2017.07.037

Lopes TA, Bufalino L, Claro PICC, Martins MA, Tonoli GHD, Mendes LM (2018) The effect of surface modifications with corona discharge in Pinus and Eucalyptus nanofibril films. Cellulose. 25:5017–5033. https://doi.org/10.1007/s10570-018-1948-3

Lu K, Hao N, Meng X, Luo Z, Tuskan GA, Arthur J, Ragauskas AJ (2019) Investigating the correlation of biomass recalcitrance with pyrolysis oil using poplar as the feedstock. Bioresour Technol 289:121589. https://doi.org/10.1016/j.biortech.2019.121589

Malucelli LC, Matos M, Jordão C, Lomonaco D, Lacerda LG, Carvalho Filho MAS, Magalhães WLE (2019) Influence of cellulose chemical pretreatment on energy consumption and viscosity of produced cellulose nanofibers (CNF) and mechanical properties of nanopaper. Cellulose 26:1667–1681. https://doi.org/10.1007/s10570-018-2161-0

Maroušek J, Bartoš P, Filip M, Kolář L et al. (2020) Advances in the agrochemical utilization of fermentation residues reduce the cost of purpose-grown phytomass for biogas production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–11. https://doi.org/10.1080/15567036.2020.1738597

Maroušek J, Maroušková A; Kůs T (2020a) Shower cooler reduces pollutants release in production of competitive cement substitute at low cost, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2020.1825560

Maroušek J, Myšková K, Žák J (2015) Managing environmental innovation: case study on biorefinery concept Rev. Téc. Ing. Univ. Zulia. Vol. 38, No. 3, 216 – 220. Disponible en <http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0254-07702015000300004&lng=es&nrm=iso

Meng X, Pu Y, Yoo CG, Li M, Bali G, Park DY, Gjersing E, Davis MF, Muchero W, Tuskan GA, Tschaplinski TJ, Ragauskas AJ (2017) An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock. Chem Sus Chem 10:139–150. https://doi.org/10.1002/cssc.201601303

Miri NE, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, Achaby ME (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2015.04.051

Mirmehdi S, Hein PRG, Sarantópoulos CIGL, Dias MV, Tonoli GHD (2018) Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers. Food Pack Shelf Life 15:87–94. https://doi.org/10.1016/j.fpsl.2017.11.007

Mo C, Wang Y, Wang L, Yin S (2014) Effects of temperature and humidity on the barrier properties of biaxially-oriented polypropylene and polyvinyl alcohol films. J Appl Pack Research. https://doi.org/10.14448/japr.01.0004

Muo IK, Adebayo Azeez, A (2019) Green entrepreneurship: literature review and agenda for future research," International Journal of Entrepreneurial Knowledge, Center for International Scientific Research of VSO and VSPP. 7: 17–29. DOI: https://doi.org/10.2478/IJEK-2019-0007

Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Applied Physic Letters 87:243110. https://doi.org/10.1063/1.2146056

Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598. https://doi.org/10.1002/adma.200803174

Nogi M, Kim C, Sugahara T, Inui T, Takahashi T, Suganuma K (2013) High thermal stability of optical transparency in cellulose nanofiber paper. Appl Phys Lett 102:181–911. https://doi.org/10.1063/1.4804361

Nystrom G, Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182. https://doi.org/10.1021/jp911272m

Ogunsile BO, Oladeji TG (2016) Utilization of banana stalk fiber as reinforcement in low density polyethylene composite. Matéria 21:953–963. https://doi.org/10.1590/s1517-707620160004.0088

Okahisa Y, Furukawa Y, Ishimoto K, Narita C, Intharapichai K, Ohara H (2018) Comparison of cellulose nanofiber properties produced from different parts of the oil palm tree. Carbohyd Polym 198:313–319. https://doi.org/10.1016/j.carbpol.2018.06.089

Pei H, Liu L, Zhang X, Sun J (2012) Flow-through pretreatment with strongly acidic electrolyzed water for hemicellulose removal and enzymatic hydrolysis of corn stover. Bioresour Technol 110:292–296. https://doi.org/10.1016/j.biortech.2011.12.062

Peters E, Kliestik T, Musa H, Durana P (2020) Product decision-making information systems, real-time big data analytics, and deep learning-enabled smart process planning in sustainable industry 4.0. Journal of Self-Governance and Management Economics 8: 16–22. https://doi.org/10.22381/JSME8320202.

Potulski DC, Viana LC, Muniz GIB, de Andrade AS, Klock U (2016) Characterization of fibrillated cellulose nanofilms obtained at different consistencies. Sci Forest 44:361–372. dx.doi.org. https://doi.org/10.18671/scifor.v44n110.09

Qing Y, Sabo R, Wu Y, Zhu JY, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102. https://doi.org/10.1007/s10570-015-0563-9

Romero-Bastida CA, Bello-Pérez LA, Velazquez G, Alvarez-Ramirez J (2015) Effect of the addition order and amylose content on mechanical, barrier and structural properties of films made with starch and montmorillonite. Carbohyd Polym 127:195–201. https://doi.org/10.1016/j.carbpol.2015.03.074

Rosa MF, Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81:83–92. https://doi.org/10.1016/j.carbpol.2010.01.059

Samei N, Mortazavi SM, Rashidi AS, Sheikhzadah-Najar S (2008) Na Investigation on the effect of hot mercerization on cotton fabrics made up of open-end yarns. J Appl Sci 8:4204–4209. https://doi.org/10.3923/jas.2008.4204.4209

Santana JS, do Rosário JM, Pola CC, Otoni CG, Soares NFF, Camilloto GP, Cruz RS (2017) Cassava starch-based nanocomposites reinforced with cellulose nanofibrils extracted from sisal. J Appl Polym Sci 134:44637. https://doi.org/10.1002/app.44637

Scatolino MV, Bufalino L, Mendes LM, Guimarães Júnior M, Tonoli GHD (2017) Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Sci Technol 51:1095–1115. https://doi.org/10.1007/s00226-017-0927-4

Scatolino MV, Fonseca CS, da Silva GM et al (2018) How the surface wettability and modulus of elasticity of the Amazonian paricá nanofibrils films are affected by the chemical changes of the natural fibers. Eur J Wood Prod 76:1581–1594. https://doi.org/10.1007/s00107-018-1343-7

Serra A, González I, Oliver-Ortega H, Tarrès Q, Delgado-Aguilar M, Mutjé P (2017) Reducing the amount of catalyst in TEMPO-Oxidized cellulose nanofibers: effect on properties and cost. Polymers 9:557. https://doi.org/10.3390/polym9110557

Silva EL, Reis CA, Vieira HC, Santos JX, Nisgoski S, Saul CK, Muñiz GIB (2020) Evaluation of poly (vinyl alcohol) addition effect on nanofibrillated cellulose films characteristics. Cerne 26:1–8. https://doi.org/10.1590/01047760202026012654

Silverstein RM, Webster FX (2000) Spectrometric identification of organic compounds. 6ª ED. LTC editor 77–88, 2000.

Siró I, Plackett D (2010) Microfibrillated cellulose and new composite materials: a review. Cellulose 17:459–464. https://doi.org/10.1007/s10570-010-9405-y

Sixta H (2006) Handbook of pulp. 1. ed., Weinheim: Wiley-VCH Verlag. 1316p 2006

Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105. https://doi.org/10.1016/S0016-7061(96)00036-5

Souza LO, Lessa OA, Dias MC, Tonoli GHD, Rezende DVB, Martins MA, Neves ICO, de Resende JV, Carvalho EEN, Vilas Boas EVB, de Oliveira JR, Franco M (2019) Study of morphological properties and rheological parameters of cellulose nanofibrils of cocoa shell (Theobroma cacao L.). Carbohyd Polym 214:152–158. https://doi.org/10.1016/j.carbpol.2019.03.037

Souza O, Federizzi M, Coelho B, Wagner TM, Wisbeck E (2010) Biodegradation of lignocellulosics residues generated in banana cultivation and its valorization for the production of biogas. Rev Bras Eng Agr Amb 14:438–443. https://doi.org/10.1590/S1415-43662010000400014

Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties. Bioresour Technol 101:5961–5968. https://doi.org/10.1016/j.biortech.2010.02.104

Stávková J, Maroušek J (2021) Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere 276:130097. https://doi.org/10.1016/j.chemosphere.2021.130097

Stark NM (2016) Opportunities for cellulose nanomaterials in packaging films: a review and future trends. J Renew Mater 4:313–326. https://doi.org/10.7569/JRM.2016.634115

Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibrils from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219. https://doi.org/10.1021/ie9011672

Şenol H (2021) Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells. Environ Sci Pollut Res 28:21661–21673. https://doi.org/10.1007/s11356-020-11984-6

TAPPI - Technical association of the pulp and paper industry. T 220-om01 (2004a) Physical testing of pulp handsheets. In: Tappi Test Methods. TAPPI Press, Norcross

TAPPI - Technical association of the pulp and paper industry. T 410-om02 (2004b) Grammage of paper and paperboard. In: Tappi Test Methods. TAPPI Press, Norcross

TAPPI - Technical association of the pulp and paper industry. T 412-om02 (2004c) Moisture in pulp, paper and paperboard. in: Tappi test methods. TAPPI Press, Norcross

Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777. https://doi.org/10.1016/j.ijbiomac.2015.08.053

Trevisan R, Rosa M, Haselein CR, Santini EJ, Gatto DA (2017) Fiber dimensions and their relationship with the transition age between juvenile and mature wood of Eucalyptus grandis W. Hill ex Maiden. Ciência Florestal 27:1385–1393. https://doi.org/10.5902/1980509830220

Vardhini KJV, Murugan R, Selvi Tamil SC, Surjit R (2016) Optimisation of alkali treatment of banana fibres on lignin removal. Indian J Fibre Textile Res 41:156–160 http://op.niscair.res.in/index.php/IJFTR/article/view/7295/847

Velásquez-Cock J, Castro C, Gañán P, Osorio M, Putaux J-L, Serpa A, Zuluaga R (2016) Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v. Valery. Ind Crop Prod 83:551–560. https://doi.org/10.1016/j.indcrop.2015.12.070

Weiss ND, Thygesen LG, Felby C, Roslander C, Gourlay K (2017) Biomass-water interactions correlate to recalcitrance and are intensified by pretreatment: an investigation of water constraint and retention in pretreated spruce using low field NMR and water retention value techniques. Biotechnol Progress 33:146–153. https://doi.org/10.1002/btpr.2398

Widsten P, Tuominen S, Qvintus-Leino P, Laine JE (2004) The influence of high defibration temperature on the properties of medium-density fiberboard (MDF) made from laccase treated softwood fibers. Wood Sci Technol 38:521–528. https://doi.org/10.1007/s00226-003-0206-4

Yue Y, Han J, Han G, Zhang Q, French AD, Wu Q (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohydr. Polym. 133:438–447. https://doi.org/10.1016/j.carbpol.2015.07.058

Zarna C, Opedal TM, Echtermeyer AT, Chinga-Carrasco G (2021) Reinforcement ability of lignocellulosic components in biocomposites and their 3D printed applications – a review. Composites Part C: Open Access. 6:100171. https://doi.org/10.1016/j.jcomc.2021.100171

Zhang C, Nair SS, Chen H, Yan N, Farnood R, Li F (2019) Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils. Carbohydr Polym 115626. https://doi.org/10.1016/j.carbpol.2019.115626

Zhang L, Xue F, Du W, Han C, Zhang C, Wang Z (2014) Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res 7:1215–1223. https://doi.org/10.1007/s12274-014-0484-1

Zhou S, Liu P, Wang M, Zhao H, Yang J, Xu F (2016) Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sust Chem Eng 4:6409–6416. https://doi.org/10.1021/acssuschemeng.6b01075

Zhu H, Xiao Z, Liu D, Li Y, Weadock NJ, Fang Z, Huang J, Hu L (2013) Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energ Environ Sci 6:2105–2111. https://doi.org/10.1039/C3EE40492G

Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344. https://doi.org/10.1039/C1GC15103G

Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79:1086–1093. https://doi.org/10.1016/j.carbpol.2009.10.045

Zuber M, Zia KM, Bhatti IA, Ali Z, Arshad MU, Saif MJ (2012) Modification of cellulosic fibers by UV-irradiation. Part II: After treatments effects. Int J Biol Macromol 51:743–748. https://doi.org/10.1016/j.ijbiomac.2012.07.001

Zuluaga R, Putaux J-L, Cruz J, Vélez J, Mondragón I, Gaňan P, Cruz J, Vélez J, Mondragón I, Gaňan P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59. https://doi.org/10.1016/j.carbpol.2008.09.024