Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers
Tóm tắt
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Tài liệu tham khảo
F. Bray, J. Ferlay, I. Soerjomataram, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. (2018). https://doi.org/10.3322/caac.21492
American Cancer Society, Cancer Facts & Figures 2018, 1–71 (2018)
A.M. Cryer, A.J. Thorley, Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol. Ther. 198, 189–205 (2019). https://doi.org/10.1016/j.pharmthera.2019.02.010
G. Holdridge, E. Kousvelari, S.-S. Lim, M. Roco, J. Scholss, NNI workshop report on nanobiotechnology (2003)
K. Willow, J.A. Holland, Lung cancer: types, survival rates, and more. https://www.healthline.com/health/lung-cancer-stages-survival-rates. Accessed 4 Mar 2020
U. Koli, A. Dey, P. Nagendra, P.V. Devarajan, R. Jain, P. Dandekar, Lung cancer receptors and targeting strategies, in Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis (Springer, Cham, 2019), pp. 229–268
USFDA, NovoTTFTM-100L System - H180002, https://www.fda.gov/medical-devices/recently-approved-devices/novottftm-100l-system-h180002. Accessed 4 Mar 2020
R. van der Meel, L.J.C. Vehmeijer, R.J. Kok, G. Storm, E.V.B. van Gaal, Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv. Drug Deliv. Rev. 65, 1284–1298 (2013). https://doi.org/10.1016/j.addr.2013.08.012
J.A. MacDiarmid, H. Brahmbhatt, Minicells: versatile vectors for targeted drug or si/shRNA cancer therapy. Curr. Opin. Biotechnol. 22, 909–916 (2011). https://doi.org/10.1016/j.copbio.2011.04.008
J.A. Macdiarmid, N.B. Amaro-mugridge, J. Madrid-weiss, I. Sedliarou, S. Wetzel et al., Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat. Biotechnol. 27(7), 643–651 (2009). https://doi.org/10.1038/nbt.1547
V. Gujrati, S. Kim, S.H. Kim, J.J. Min, H.E. Choy et al., Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 8, 1525–1537 (2014). https://doi.org/10.1021/nn405724x
Y. Zhang, W. Ji, L. He, Y. Chen, X. Ding et al., E. coli Nissle 1917-derived minicells for targeted delivery of chemotherapeutic drug to hypoxic regions for cancer therapy. Theranostics 8, 1690–1705 (2018). https://doi.org/10.7150/thno.21575
E. Galanis, S.K. Carlson, N.R. Foster, V. Lowe, F. Quevedo et al., Phase I trial of a pathotropic retroviral vector expressing a cytocidal cyclin G1 construct (Rexin-G) in patients with advanced pancreatic cancer. Mol. Ther. 16, 979–984 (2008). https://doi.org/10.1038/mt.2008.29
M. Huo, L. Wang, Y. Chen, J. Shi, Nanomaterials/microorganism-integrated microbiotic nanomedicine. Nano Today 32, 100854 (2020). https://doi.org/10.1016/j.nantod.2020.100854
C. Constantin, M. Neagu, Bio-inspired nanomaterials: a better option for nanomedicine. Trends Toxicol. Relat. Sci. 1(1), 3–20 (2017)
M.G. Kramer, M. Masner, F.A. Ferreira, R.M. Hoffman, Bacterial therapy of cancer: promises, limitations, and insights for future directions. Front. Microbiol. 9, 9–16 (2018). https://doi.org/10.3389/fmicb.2018.00016
M.T. Duong, Y. Qin, S. You, J. Min, Bacteria-cancer interactions: bacteria-based cancer therapy. Exp. Mol. Med. 51(12), 1–5 (2019). https://doi.org/10.1038/s12276-019-0297-0
N. Forbes, Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785–794 (2010). https://doi.org/10.1038/nrc2934
F. Farjadian, M. Moghoofei, S. Mirkiani, A. Ghasemi, N. Rabiee et al., Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work? Biotechnol. Adv. 36, 968–985 (2018). https://doi.org/10.1016/j.biotechadv.2018.02.016
American Association for Cancer Research, “Minicells” safely deliver targeted drugs. Cancer Discov. 3(1), 5 (2013). https://doi.org/10.1158/2159-8290.CD-NB2012-134
H.N. Nguyen, S. Romero Jovel, T.H.K. Nguyen, Nanosized minicells generated by lactic acid bacteria for drug delivery. J. Nanomater. (2017). https://doi.org/10.1155/2017/6847297
C. Mader, S. Ku, U.B. Sleytr, M. Sa, S-layer-coated liposomes as a versatile system for entrapping and binding target molecules. Biochem. Biophys. Acta 1463, 142–150 (2000). https://doi.org/10.1016/S0005-2736(99)00190-X
M.H. Ucisik, S. Küpcü, B. Schuster, U.B. Sleytr, Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. J. Nanobiotechnol. 11, 1–13 (2013). https://doi.org/10.1186/1477-3155-11-37
M. Wu, X. Liu, H. Bai, L. Lai, Q. Chen et al., Surface-layer protein-enhanced immunotherapy based on cell membrane-coated nanoparticles for the effective inhibition of tumor growth and metastasis. ACS Appl. Mater. Interfaces 11, 9850–9859 (2019). https://doi.org/10.1021/acsami.9b00294
M. Lakatos, S. Matys, J. Raff, W. Pompe, M. Lakatos et al., Colorimetric as (V) detection based on S-layer functionalized gold nanoparticles. Talanta 144, 241–246 (2015). https://doi.org/10.1016/j.talanta.2015.05.082
C. Jogler, D. Sch, Genomics, genetics, and cell biology of magnetosome formation. Annu. Rev. Microbiol. 63, 501–521 (2009). https://doi.org/10.1146/annurev.micro.62.081307.162908
Y. Lu, L. Dong, L. Zhang, Y. Su, S. Yu, Biogenic and biomimetic magnetic nanosized assemblies. Nano Today 7, 297–315 (2012). https://doi.org/10.1016/j.nantod.2012.06.011
M. Boucher, F. Geffroy, S. Prévéral, L. Bellanger, E. Selingue et al., Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials 121, 167–178 (2017). https://doi.org/10.1016/j.biomaterials.2016.12.013
Q. Dai, R. Long, S. Wang, R.K. Kankala, J. Wang et al., Bacterial magnetosomes as an efficient gene delivery platform for cancer theranostics. Microb. Cell Fact. 16, 1–9 (2017). https://doi.org/10.1186/s12934-017-0830-6
A.M. Dunn, O.S. Hofmann, B. Waters, E. Witchel, Cloaking malware with the trusted platform module, in Proceedings of the 20th USENIX Security Symposium (2011), pp. 395–410
X. Guan, B. Yang, M. Xie, D.K. Ban, X. Zhao et al., MRI reporter gene MagA suppresses transferrin receptor and maps Fe2+ dependent lung cancer. Nanomed. Nanotechnol. Biol. Med. 21, 102064 (2019). https://doi.org/10.1016/j.nano.2019.102064
K. Maruyama, H. Takeyama, T. Mori, K. Ohshima, Detection of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) using a fully automated system with a nano-scale engineered biomagnetite. Biosens. Bioelectron. 22, 2282–2288 (2007). https://doi.org/10.1016/j.bios.2006.11.018
J. Wang, Y. Geng, Y. Zhang, X. Wang, J. Liu et al., Bacterial magnetosomes loaded with doxorubicin and transferrin improve targeted therapy of hepatocellular carcinoma. Nanotheranostics 3(3), 284 (2019). https://doi.org/10.7150/ntno.34601
Y. Maeda, T. Yoshino, T. Matsunaga, Novel nanocomposites consisting of in vivo -biotinylated bacterial magnetic particles and quantum dots for magnetic separation and fluorescent labeling of cancer cells. J. Mater. Chem. 19, 6361–6366 (2009). https://doi.org/10.1039/b900693a
Z.V. Novakova, I. Gasparova, L. Krajciova, M. Molcan, I. Varga et al., Effect of magnetosomes on cell proliferation, apoptosis induction and expression of Bcl-2 in the human lung cancer cell line A549. Biologia 72(5), 554–560 (2017). https://doi.org/10.1515/biolog-2017-0059
J.A. Kraśko, K. Źilionyte, A. Darinskas, M. Strioga, S.R. Jabceva et al., Bacterial ghosts as adjuvants in syngeneic tumour cell lysate-based anticancer vaccination in a murine lung carcinoma model. Oncol. Rep. 37, 171–178 (2017). https://doi.org/10.3892/or.2016.5252
T. Langemann, V.J. Koller, A. Muhammad, P. Kudela, U.B. Mayr et al., The bacterial ghost platform system: production and applications. Bioeng. Bugs 1, 326–336 (2010). https://doi.org/10.4161/bbug.1.5.12540
I.A. Hajam, P.A. Dar, G. Won, J.H. Lee, Bacterial ghosts as adjuvants: mechanisms and potential. Vet. Res. 48, 1–13 (2017). https://doi.org/10.1186/s13567-017-0442-5
R. Acevedo, S. Fernández, C. Zayas, A. Acosta, M.E. Sarmiento et al., Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5, 1–6 (2014). https://doi.org/10.3389/fimmu.2014.00121
A. Gholami, M. Milad, R.-A. Sara, Y. Ghasemi, Industrial production of polyhydroxyalkanoates by bacteria: opportunities and challenges. Minerva Biotechnol. 28, 59–74 (2016). https://doi.org/10.13140/RG.2.1.5129.4169
O.Y. Kim, H.T. Park, N.T.H. Dinh, S.J. Choi, J. Lee et al., Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat. Commun. 8(1), 1–9 (2017). https://doi.org/10.1038/s41467-017-00729-8
C. Irene, L. Fantappiè, E. Caproni, F. Zerbini, A. Anesi et al., Bacterial outer membrane vesicles engineered with lipidated antigens as a platform for Staphylococcus aureus vaccine. Proc. Natl. Acad. Sci. USA 116, 21780–21788 (2019). https://doi.org/10.1073/pnas.1905112116
S. Jain, J. Pillai, Bacterial membrane vesicles as novel nanosystems for drug delivery. Int. J. Nanomed. 12, 6329–6341 (2017). https://doi.org/10.2147/IJN.S137368
V. Gujrati, J. Prakash, J. Malekzadeh-najafabadi, A. Stiel, U. Klemm et al., Heaters for optoacoustic imaging. Nat. Commun. 10, 1–10 (2019). https://doi.org/10.1038/s41467-019-09034-y
N.P. Katuwavila, A.D.L.C. Perera, S.R. Samarakoon, P. Soysa, V. Karunaratne et al., Chitosan-alginate nanoparticle system efficiently delivers doxorubicin to MCF-7 Cells. J. Nanomater. (2016). https://doi.org/10.1155/2016/3178904
L. Li, R. Tao, M. Song, Y. Zhang, K. Chen et al., Fabrication of self-assembled folate–biotin-quaternized starch nanoparticles as co-carrier of doxorubicin and siRNA. J. Biomater. Appl. 32, 587–597 (2017). https://doi.org/10.1177/0885328217737187
M. Sreeranganathan, S. Uthaman, B. Sarmento, C.G. Mohan, I.K. Park et al., In vivo evaluation of cetuximab-conjugated poly(γ-glutamic acid)-docetaxel nanomedicines in EGFR-overexpressing gastric cancer xenografts. Int. J. Nanomed. 12, 7167–7182 (2017). https://doi.org/10.2147/IJN.S143529
M. Li, W. Song, Z. Tang, S. Lv, L. Lin et al., Nanoscaled poly(l-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS Appl. Mater. Interfaces 5, 1781–1792 (2013). https://doi.org/10.1021/am303073u
Y. Luo, X. Cai, H. Li, Y. Lin, D. Du, Hyaluronic Acid-modified multifunctional Q-graphene for targeted killing of drug-resistant lung cancer cells. ACS Appl. Mater. Interfaces 8, 4048–4055 (2016). https://doi.org/10.1021/acsami.5b11471
V. Le Joncour, P. Laakkonen, Seek & Destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg. Med. Chem. 26, 2797–2806 (2018). https://doi.org/10.1016/j.bmc.2017.08.052
J. Zou, S. Su, Z. Chen, F. Liang, Y. Zeng et al., Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therap. Artif. Cells Nanomed. Biotechnol. 47, 3456–3464 (2019). https://doi.org/10.1080/21691401.2019.1626863
I.I. Lungu, A.M. Grumezescu, A. Volceanov, E. Andronescu, Nanobiomaterials used in cancer therapy: an up-to-date overview. Molecules 24, 1–21 (2019). https://doi.org/10.3390/molecules24193547
K. Lundstrom, Latest trends in cancer therapy applying viral vectors. Future Med. 12(11), 667–684 (2017). https://doi.org/10.2217/fvl-2017-0070
E.W. Kovacs, J.M. Hooker, D.W. Romanini, P.G. Holder, K.E. Berry et al., Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug. Chem. 18, 1140–1147 (2007). https://doi.org/10.1021/bc070006e
T.L. Schlick, Z. Ding, E.W. Kovacs, M.B. Francis, Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 127, 3718–3723 (2005). https://doi.org/10.1021/ja046239n
S.K. Dixit, N.L. Goicochea, M. Daniel, A. Murali, L. Bronstein et al., Quantum dot encapsulation in viral capsids. Nano Lett. 6, 1993–1998 (2006). https://doi.org/10.1021/nl061165u
Y.M. Huh, E.S. Lee, J.H. Lee, Y. WJun, P. Kim, et al., Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv. Mater. 19(20), 3109–3112 (2007). https://doi.org/10.1002/adma.200701952
K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong et al., Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006). https://doi.org/10.1126/science.1122716
R.J. Tseng, C. Tsai, L. Ma, J. Ouyang, C.S. Ozkan et al., Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat. Nanotechnol. 1(1), 72–77 (2006). https://doi.org/10.1038/nnano.2006.55
D. Ghosh, Y. Lee, S. Thomas, A.G. Kohli, D.S. Yun et al., M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat. Nanotechnol. 7, 677–682 (2012). https://doi.org/10.1038/nnano.2012.146
A. Kornienko, A. Evidente, M. Vurro, V. Mathieu, A. Cimmino et al., Toward a cancer drug of fungal origin. Med. Res. Rev. 35, 937–967 (2015). https://doi.org/10.1002/med.21348
C. Sabu, P. Mufeedha, K. Pramod, Yeast-inspired drug delivery: biotechnology meets bioengineering and synthetic biology. Expert Opin. Drug Del. 16(1), 27–41 (2019). https://doi.org/10.1080/17425247.2019.1551874
A. Geller, R. Shrestha, J. Yan, Yeast-derived β-glucan in cancer: novel uses of a traditional therapeutic. Int. J. Mol. Sci. 20, 1–20 (2019). https://doi.org/10.3390/ijms20153618
R. Roudi, S.R. Mohammadi, M. Roudbary, M. Mohsenzadegan, Lung cancer and β-glucans: review of potential therapeutic applications. Invest. New Drugs 35, 509–517 (2017). https://doi.org/10.1007/s10637-017-0449-9
S.H. Albeituni, C. Ding, M. Liu, X. Hu, F. Luo et al., Yeast-derived particulate β-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancer. J. Immunol. 196(5), 2167–2180 (2016). https://doi.org/10.4049/jimmunol.1600346
S. Majeed, M.S. Bin Abdullah, G.K. Dash, M.T. Ansari, A. Nanda, Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin. J. Nat. Med. 14, 615–620 (2016). https://doi.org/10.1016/S1875-5364(16)30072-3
X. Hu, K. Saravanakumar, T. Jin, M.H. Wang, Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus. Int. J. Nanomed. 14, 3427–3438 (2019). https://doi.org/10.2147/IJN.S200817
K. Saravanakumar, E. Jeevithan, X. Hu, R. Chelliah, D.H. Oh et al., Enhanced anti-lung carcinoma and anti-biofilm activity of fungal molecules mediated biogenic zinc oxide nanoparticles conjugated with β-D-glucan from barley. J. Photochem. Photobiol. B Biol. 203, 111728 (2020). https://doi.org/10.1016/j.jphotobiol.2019.111728
V. Gujrati, M. Lee, Y.J. Ko, S. Lee, D. Kim et al., Bioengineered yeast-derived vacuoles with enhanced tissue-penetrating ability for targeted cancer therapy. Proc. Natl. Acad. Sci. USA 113, 710–715 (2016). https://doi.org/10.1073/pnas.1509371113
X. Zhou, K. Ling, M. Liu, X. Zhang, J. Ding et al., Targeted delivery of cisplatin-derived nanoprecursors via a biomimetic yeast microcapsule for tumor therapy by the oral route. Theranostics 9, 6568–6586 (2019). https://doi.org/10.7150/thno.35353
E.R. Soto, G.R. Ostroff, Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA. Bioconjug. Chem. 19, 840–848 (2008). https://doi.org/10.1021/bc700329p
G. Baskar, K. Lalitha, R. Aiswarya, R. Naveenkumar, Synthesis, characterization and synergistic activity of cerium-selenium nanobiocomposite of fungal L-asparaginase against lung cancer. Mater. Sci. Eng. C 93, 809–815 (2018). https://doi.org/10.1016/j.msec.2018.08.051
Q. Xia, Y. Zhang, Z. Li, X. Hou, N. Feng, Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm. Sin. B 9, 675–689 (2019). https://doi.org/10.1016/j.apsb.2019.01.011
M. Gagliardi, Biomimetic and bioinspired nanoparticles for targeted drug delivery. Ther. Deliv. 8, 289–299 (2017). https://doi.org/10.4155/tde-2017-0013
M. Gagliardi, A. Bertero, A. Bifone, Molecularly imprinted biodegradable nanoparticles. Sci. Rep. 7, 1–9 (2017). https://doi.org/10.1038/srep40046
A. Sahari, M.A. Traore, B.E. Scharf, B. Behkam, Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape. Biomed. Microdevices 16, 717–725 (2014). https://doi.org/10.1007/s10544-014-9876-y
S. Tan, T. Wu, D. Zhang, Z. Zhang, Cell or cell membrane-based drug delivery systems. Theranostics 5, 863–881 (2015). https://doi.org/10.7150/thno.11852
S.O. Choi, Y.C. Kim, J.H. Park, J. Hutcheson, H.S. Gill et al., An electrically active microneedle array for electroporation. Biomed. Microdevices 12, 263–273 (2010). https://doi.org/10.1007/s10544-009-9381-x
A.L. Lynch, R. Chen, N.K.H. Slater, PH-responsive polymers for trehalose loading and desiccation protection of human red blood cells. Biomaterials 32, 4443–4449 (2011). https://doi.org/10.1016/j.biomaterials.2011.02.062
C. Gutiérrez Millán, A.Z. Castañeda, M.L. Sayalero Marinero, J.M. Lanao, Factors associated with the performance of carrier erythrocytes obtained by hypotonic dialysis. Blood Cells Mol. Dis. 33, 132–140 (2004). https://doi.org/10.1016/j.bcmd.2004.06.004
J. Bird, R. Best, D.A. Lewis, The encapsulation of insulin in erythrocytes. J. Pharm. Pharmacol. 35, 246–247 (1983). https://doi.org/10.1111/j.2042-7158.1983.tb02921.x
M. Seth, A. Ramachandran, L.G. Leal, Dilution technique to determine the hydrodynamic volume fraction of a vesicle suspension. Langmuir 26, 15169–15176 (2010). https://doi.org/10.1021/la1023086
Y. Sato, H. Yamakose, Y. Suzuki, Mechanism of hypotonic hemolysis of human erythrocytes. Biol. Pharm. Bull. 16, 506–512 (1993)
Z. Zhao, A. Ukidve, Y. Gao, J. Kim, S. Mitragotri, Erythrocyte leveraged chemotherapy (ELeCt): nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci. Adv. 5, 1–13 (2019). https://doi.org/10.1126/sciadv.aax9250
M. Gao, C. Liang, X. Song, Q. Chen, Q. Jin et al., Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 170, 1429 (2017). https://doi.org/10.1002/adma.201701429
I.V. Zelepukin, A.V. Yaremenko, V.O. Shipunova, Nanoparticle-based drug delivery via RBC- hitchhiking for the inhibition of lung metastases. Nanoscale 11, 1636–1646 (2019). https://doi.org/10.1039/c8nr07730d
D.M. Zhu, W. Xie, Y.S. Xiao, M. Suo, Z. Ming-Hui et al., Erythrocyte membrane-coated Gold nanocages for targeted photothermal and chemical therapy. Nanotechnology 29(8), 084002 (2017). https://doi.org/10.1088/1361-6528/aa9ca1
Y. Huang, X. Gao, J. Chen, Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharm. Sin. B 8, 4–13 (2018). https://doi.org/10.1016/j.apsb.2017.12.001
B. Qian, J. Li, H. Zhang, T. Kitamura, J. Zhang et al., CCL2 recruits inflammatory monocytes to facilitate breast tumor metastasis. Nature 475, 222–225 (2007). https://doi.org/10.1038/nature10138
F. Pierigè, S. Serafini, L. Rossi, M. Magnani, Cell-based drug delivery. Adv. Drug Deliv. Rev. 60, 286–295 (2008). https://doi.org/10.1016/j.addr.2007.08.029
L.E. Paulis, S. Mandal, M. Kreutz, C.G. Figdor, Dendritic cell-based nanovaccines for cancer immunotherapy. Curr. Opin. Immunol. 25, 389–395 (2013). https://doi.org/10.1016/j.coi.2013.03.001
X. Dong, D. Chu, Z. Wang, Leukocyte-mediated delivery of nanotherapeutics in inflammatory and tumor sites. Theranostics 7, 751–763 (2017). https://doi.org/10.7150/thno.18069
S.B. Coffelt, M.D. Wellenstein, K.E. De Visser, Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016). https://doi.org/10.1038/nrc.2016.52
A.D. Fesnak, C.H. June, B.L. Levine, Engineered T cells: the promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 16, 566–581 (2016). https://doi.org/10.1038/nrc.2016.97
S.R. Hyslop, E.C. Josefsson, Undercover agents: targeting tumours with modified platelets. Trends Cancer 3, 235–246 (2017). https://doi.org/10.1016/j.trecan.2017.01.006
H. Wang, J. Wu, G.R. Williams, Q. Fan, S. Niu et al., Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery. J. Nanobiotechnol. 17, 1–16 (2019). https://doi.org/10.1186/s12951-019-0494-y
C.J. Hu, R.H. Fang, K. Wang, B.T. Luk, S. Thamphiwatana et al., Nanoparticle biointerfacing by platelet membrane cloaking. Nat. Lett. 526(7571), 118–121 (2015). https://doi.org/10.1038/nature15373
S. Zou, B. Wang, C. Wang, Q. Wang, L. Zhang, Cell membrane-coated nanoparticles: research advances. Nanomedicine 15, 13 (2020). https://doi.org/10.2217/nnm-2019-0388
T. Squillaro, G. Peluso, U. Galderisi, Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 25, 829–848 (2016). https://doi.org/10.3727/096368915X689622
S. Ma, N. Xie, W. Li, B. Yuan, Y. Shi et al., Immunobiology of mesenchymal stem cells. Cell Death Differ. 21, 216–225 (2014). https://doi.org/10.1038/cdd.2013.158
M.Y. Thanuja, C. Anupama, S.H. Ranganath, Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far. Adv. Drug Deliv. Rev. 132, 57–80 (2018). https://doi.org/10.1016/j.addr.2018.06.012
V. Vijayan, S. Uthaman, I.K. Park, Cell membrane-camouflaged nanoparticles: a promising biomimetic strategy for cancer theragnostics. Polymers 10(9), 983 (2018). https://doi.org/10.3390/polym10090983
R.H. Fang, A. Kroll, W. Gao, L. Zhang, Cell membrane coating nanotechnology. Adv. Mater. 30, 1–68 (2018). https://doi.org/10.1002/adma.201706759
R.H. Fang, C.J. Hu, B.T. Luk, W. Gao, J.A. Copp et al., Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14(4), 2181–2188 (2015). https://doi.org/10.1021/nl500618u
J.Y. Zhu, D.W. Zheng, M.K. Zhang, W.Y. Yu, W.X. Qiu et al., Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 16, 5895–5901 (2016). https://doi.org/10.1021/acs.nanolett.6b02786
J. Jin, B. Krishnamachary, J.D. Barnett, S. Chatterjee, D. Chang et al., Human cancer cell membrane-coated biomimetic nanoparticles reduce fibroblast-mediated invasion and metastasis and induce T-cells. ACS Appl. Mater. Interfaces 11, 7850–7861 (2019). https://doi.org/10.1021/acsami.8b22309
H. Sun, J. Su, Q. Meng, Q. Yin, L. Chen et al., Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 28, 9581–9588 (2016). https://doi.org/10.1002/adma.201602173
B. Luk, L. Zhang, Cell membrane-camouflaged nanoparticles for drug delivery. J. Control Release 28, 600–607 (2015). https://doi.org/10.1016/j.jconrel.2015.07.019
G. Raposo, W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013). https://doi.org/10.1083/jcb.201211138
G. Van Niel, G. D’Angelo, G. Raposo, Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018). https://doi.org/10.1038/nrm.2017.125
C. Sheehan, C. D’Souza-Schorey, Tumor-derived extracellular vesicles: Molecular parcels that enable regulation of the immune response in cancer. J. Cell Sci. 132, 1–12 (2019). https://doi.org/10.1242/jcs.235085
V. Muralidharan-Chari, J.W. Clancy, A. Sedgwick, C. D’Souza-Schorey, Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Sci. 123, 1603–1611 (2010). https://doi.org/10.1242/jcs.064386
R. Kalluri, The biology and function of exosomes in cancer. J. Clin. Invest. 126(4), 1208–1215 (2016). https://doi.org/10.1172/JCI81135
J. Cheng, T. Nonaka, D.T.W. Wong, Salivary exosomes as nanocarriers for cancer biomarker delivery. Materials 12, 1–18 (2019). https://doi.org/10.3390/ma12040654
J. Conde-Vancells, E. Rodriguez-Suarez, N. Embade, D. Gil et al., Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 7, 5157–5166 (2008). https://doi.org/10.1021/pr8004887
A.C. Marques, P.J. Costa, S. Velho, M.H. Amaral, P.J. Costa et al., Functionalizing nanoparticles with cancer-targeting antibodies: a comparison of strategies. J. Control. Release 320, 180–200 (2020). https://doi.org/10.1016/j.jconrel.2020.01.035
J. Löfblom, J. Feldwisch, V. Tolmachev, J. Carlsson, S. Ståhl et al., Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 584, 2670–2680 (2010). https://doi.org/10.1016/j.febslet.2010.04.014
K.K. Ng, J.F. Lovell, G. Zheng, Lipoprotein-inspired nanoparticles for cancer theranostics. Acc. Chem. Res. 44, 1105–1113 (2011). https://doi.org/10.1021/ar200017e
J.Y. Oh, H.S. Kim, L. Palanikumar, E.M. Go, B. Jana et al., Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat. Commun. 9, 1–9 (2018). https://doi.org/10.1038/s41467-018-06979-4
S.H. Van Rijt, D.A. Bölükbas, C. Argyo, K. Wipplinger, M. Naureen et al., Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in the lung. Nanoscale 8, 8058–8069 (2016). https://doi.org/10.1039/c5nr04119h
Y.J. Huang, S.H. Hsu, Trail-functionalized gold nanoparticles selectively trigger apoptosis in polarized macrophages. Nanotheranostics 1, 326–337 (2017). https://doi.org/10.7150/ntno.20233
P. Kaur, T. Garg, G. Rath, R.S.R. Murthy, A.K. Goyal, Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv. 7544, 1–12 (2014). https://doi.org/10.3109/10717544.2014.935530
F. Mousseau, C. Puisney, S. Mornet, R. Le Borgne, A. Vacher et al., Supported pulmonary surfactant bilayers on silica nanoparticles: formulation, stability and impact on lung epithelial cells—introduction. Nanoscale (2017). https://doi.org/10.1039/C7NR04574C
J.Y. Kasper, L. Feiden, M.I. Hermanns, C. Bantz, M. Maskos et al., Pulmonary surfactant augments cytotoxicity of silica nanoparticles: studies on an in vitro air—blood barrier model. Beilstein J. Nanotechnol. 6, 517–528 (2015). https://doi.org/10.3762/bjnano.6.54
L. De Backer, K. Braeckmans, M.C.A. Stuart, J. Demeester, S.C. De Smedt et al., Bio-inspired pulmonary surfactant-modified nanogels: a promising siRNA delivery system. J. Control. Release 206, 177–186 (2015). https://doi.org/10.1016/j.jconrel.2015.03.015
N. Joshi, N. Shirsath, A. Singh, K.S. Joshi, R. Banerjee, Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific. Sci. Rep. 4, 1–11 (2014). https://doi.org/10.1038/srep07085
J. Yoo, C. Park, G. Yi, D. Lee, H. Koo, Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 11, 1–13 (2019). https://doi.org/10.3390/cancers11050640
H. Khatri, N. Chokshi, S. Rawal, B.M. Patel, M. Badanthadka et al., Fabrication and in vivo evaluation of ligand appended paclitaxel and artemether loaded lipid nanoparticulate systems for the treatment of NSCLC: a nanoparticle assisted combination oncotherapy. Int. J. Pharm. 583, 119386 (2020). https://doi.org/10.1016/j.ijpharm.2020.119386
S. Rawal, M. Patel, Lipid nanoparticulate systems: modern versatile drug carriers, in Lipid Nanocarriers Drug Target. ed. by A.M. Grumezescu (Elseveir, Oxford, 2018), pp. 49–138. https://doi.org/10.1016/B978-0-12-813687-4.00002-5
H. Khatri, N. Chokshi, S. Rawal, M. Patel, Fabrication, charecterization and optimization of Artemether loaded PEGylated solid lipid nanoparticles for the treatment of lung cancer. Mater. Res. Express 6(4), 045014 (2019). https://doi.org/10.1088/2053-1591/aaf8a3
R.K. Tekade, T. Dutta, A. Tyagi, A.C. Bharti, B.C. Das et al., Surface-engineered dendrimers for dual drug delivery: a receptor up-regulation and enhanced cancer targeting strategy. J. Drug Target. 16(10), 758–772 (2008). https://doi.org/10.1080/10611860802473154
H. Kulhari, D. Pooja, S. Shrivastava, M. Kuncha, Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep. 6(1), 1–3 (2016). https://doi.org/10.1038/srep23179
S. Parveen, R. Misra, S.K. Sahoo, Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotechn. Biol. Med. 8, 147–166 (2012). https://doi.org/10.1016/j.nano.2011.05.016
C. Clementi, K. Miller, A. Mero, R. Satchi-Fainaro, G. Pasut, Dendritic poly(ethylene glycol) bearing paclitaxel and alendronate for targeting bone neoplasms. Mol. Pharm. 8, 1063–1072 (2011). https://doi.org/10.1021/mp2001445
W. Xuan, Y. Xia, T. Li, L. Wang, Y. Liu et al., Molecular self-assembly of bioorthogonal aptamer-prodrug conjugate micelles for hydrogen peroxide and ph-independent cancer chemodynamic therapy. J. Am. Chem. Soc. 142, 937–944 (2020). https://doi.org/10.1021/jacs.9b10755
S.S. Desale, S.M. Cohen, Y. Zhao, A.V. Kabanov, T.K. Bronich, Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer. J. Control. Release 171, 339–348 (2013). https://doi.org/10.1016/j.jconrel.2013.04.026
C. Shi, Z. Zhang, J. Shi, F. Wang, Y. Luan, Co-delivery of docetaxel and chloroquine via PEO-PPO-PCL/TPGS micelles for overcoming multidrug resistance. Int. J. Pharm. 495, 932–939 (2015). https://doi.org/10.1016/j.ijpharm.2015.10.009
C. Sarisozen, A.H. Abouzeid, V.P. Torchilin, The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors. Eur. J. Pharm. Biopharm. 88, 539–550 (2014). https://doi.org/10.1016/j.ejpb.2014.07.001
G. Salzano, G. Navarro, M.S. Trivedi, G. De Rosa, V.P. Torchilin, Multifunctional polymeric micelles co-loaded with anti-survivin siRNA and paclitaxel overcome drug resistance in an animal model of ovarian cancer. Mol. Cancer Ther. 14, 1075–1084 (2015). https://doi.org/10.1158/1535-7163.MCT-14-0556
C.L. Jun Zhao, C. Wu, J. Abbruzzese, R.F. Hwang, Cyclopamine-loaded core-crosslinked polymeric micelles enhance radiation response in pancreatic cancer and pancreatic stellate cells. Mol. Pharm. 12, 2093–2100 (2015). https://doi.org/10.1021/mp500875f
H.E. Colley, V. Hearnden, M. Avila-olias, D. Cecchin, I. Canton et al., Polymersome-mediated delivery of combination anticancer therapy to head and neck cancer cells: 2D and 3D in vitro evaluation. Mol. Pharm. 11, 1176–1188 (2014). https://doi.org/10.1021/mp400610b
T.O. Pangburn, K. Georgiou, F.S. Bates, E. Kokkoli, Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon orai3 protein expression. Langmuir 28, 12816–12830 (2012). https://doi.org/10.1021/la300874z
L. Guan, L. Rizzello, G. Battaglia, Polymersomes and their applications in cancer delivery and therapy. Nanomedicine 10, 2757–2780 (2015). https://doi.org/10.2217/nnm.15.110
D. Vergara, C. Bellomo, X. Zhang, V. Vergaro, A. Tinelli et al., Lapatinib/paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. Nanomed. Nanotechnol. Biol. Med. 8, 891–899 (2012). https://doi.org/10.1016/j.nano.2011.10.014
Z. Xu, Z. Zhang, Y. Chen, L. Chen, L. Lin et al., The characteristics and performance of a multifunctional nanoassembly system for the co-delivery of docetaxel and iSur-pDNA in a mouse hepatocellular carcinoma model. Biomaterials 31, 916–922 (2010). https://doi.org/10.1016/j.biomaterials.2009.09.103
B. Zhu, L. Yu, Q. Yue, Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed. Pharmacother. 91, 287–294 (2017). https://doi.org/10.1016/j.biopha.2017.02.112
G. Hariri, A.D. Edwards, T.B. Merrill, J.M. Greenbaum, A.E. Van Der Ende et al., Sequential targeted delivery of paclitaxel and camptothecin using a cross-linked nanosponge. Netw. Lung Cancer Chemother. 11(1), 265–75 (2014). https://doi.org/10.1021/mp400432b
G. Tejashri, B. Amrita, J. Darshana, Cyclodextrin based nanosponges for pharmaceutical use: a review. Acta Pharm. 63, 335–358 (2013). https://doi.org/10.2478/acph-2013-0021
K. Li, Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer. Int. J. Nanomed. 2(12), 1699–1715 (2017). https://doi.org/10.2147/IJN.S121262
A. Ediriwickrema, J. Zhou, Y. Deng, W.M. Saltzman, Multi-layered nanoparticles for combination gene and drug delivery to tumors. Biomaterials 35, 9343–9354 (2014). https://doi.org/10.1016/j.biomaterials.2014.07.043
W. Lohcharoenkal, L. Wang, Y.C. Chen, Y. Rojanasakul, Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed. Res. Int. 2014, 180549 (2014). https://doi.org/10.1155/2014/180549
W. Yu, C. Liu, Y. Liu, N. Zhang, W. Xu, Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharm. Res. 27(8), 1584–1596 (2010). https://doi.org/10.1007/s11095-010-0149-z
B. Posocco, E. Dreussi, J. De Santa, G. Toffoli, M. Abrami et al., Polysaccharides for the delivery of antitumor drugs. Materials 8(5), 2569–2615 (2015). https://doi.org/10.3390/ma8052569
K. Liu, W. Zheng, C. Wang, Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer. Nanotechnology 21(31), 315106 (2010). https://doi.org/10.1088/0957-4484/21/31/315106
J.M. Oh, S.J. Choi, G.E. Lee, S.H. Han, J.H. Choy, Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand. Adv. Funct. Mater. 19, 1617–1624 (2009). https://doi.org/10.1002/adfm.200801127
J.P. Oliveira, A.R. Prado, W.J. Keijok, P.W.P. Antunes, E.R. Yapuchura et al., Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol. Sci. Rep. 9, 1–8 (2019). https://doi.org/10.1038/s41598-019-50424-5
K. Fan, X. Yan, Bioengineered Ferritin Nanoprobes for cancer Theranostics, in Handbook Nanomaterials for Cancer Theranostics. ed. by J. Conde (Elsevier, Amsterdam, 2018), pp. 143–175. https://doi.org/10.1016/B978-0-12-813339-2.00006-2
V.R. Cherkasov, E.N. Mochalova, A.V. Babenyshev, J.M. Rozenberg, I.L. Sokolov et al., Antibody-directed metal-organic framework nanoparticles for targeted drug delivery. Acta Biomater. 103, 223–236 (2019). https://doi.org/10.1016/j.actbio.2019.12.012
K.S. Kim, W. Park, K. Na, Gadolinium-chelate nanoparticle entrapped human mesenchymal stem cell via photochemical internalization for cancer diagnosis. Biomaterials 36, 90–97 (2014). https://doi.org/10.1016/j.biomaterials.2014.09.014
Y. Cong, Z.-Y. Qiao, H. Wang, Molecular self-assembly constructed in physiological conditions for cancer diagnosis and therapy. Adv. Ther. 1, 1800067 (2018). https://doi.org/10.1002/adtp.201800067
S. Stupp, H. Zha, L. Palmer, H. Cui, R. Bitton, Self-assembly of biomolecular soft matter. Bone 166, 9–30 (2013). https://doi.org/10.1161/CIRCULATIONAHA.110.956839
D.J. Toft, T.J. Moyer, S.M. Standley, Y. Ruff, A. Ugolkov et al., Coassembled cytotoxic and pegylated peptide amphiphiles form filamentous nanostructures with potent antitumor activity in models of breast cancer. ACS Nano 6, 7956–7965 (2012). https://doi.org/10.1021/nn302503s
M. He, J. Zhu, N. Yu, H. Kong, X. Zeng et al., The superior antitumor effect of self-assembled paclitaxel nanofilaments for lung cancer cells. Curr. Drug Deliv. 16, 171–178 (2018). https://doi.org/10.2174/1567201815666181017094003
N.P. Truong, M.R. Whittaker, C.W. Mak, T.P. Davis, The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv. 12, 129–142 (2015). https://doi.org/10.1517/17425247.2014.950564
W. Hoffman, F.G. Lakkis, G. Chalasani, B cells, antibodies, and more. Clin. J. Am. Soc. Nephrol. 11, 137–154 (2016). https://doi.org/10.2215/CJN.09430915
J.M. Redman, E.M. Hill, D. AlDeghaither, L.M. Weiner, Mechanisms of action of therapeutic antibodies for cancer. Mol. Immunol. 67, 28–45 (2015). https://doi.org/10.1016/j.molimm.2015.04.002
M.J. Adler, D.S. Dimitrov, Therapeutic antibodies against cancer. Hematol. Oncol. Clin. N. Am. 26, 447–481 (2012). https://doi.org/10.1016/j.hoc.2012.02.013
S. Weslen, R. Senthil, S. Sekar, Enhancing anti-cancer activity of erlotinib by antibody conjugated nano fibrin: in vitro studies on lung adenocarcinoma cell lines. Mater. Chem. Phys. 224, 328–333 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.061
Z. Wang, N. Sun, H. Liu, C. Chen, P. Ding et al., High-efficiency isolation and rapid identification of heterogeneous circulating tumor cells ( CTCs ) using dual-antibody-modified fluorescent-magnetic nanoparticles. ACS Appl. Mater. Interfaces 11(43), 39586–39593 (2019). https://doi.org/10.1021/acsami.9b14051
J. Wan, W. Wu, R. Zhang, S. Liu, Y. Huang, Anti-EGFR antibody conjugated silica nanoparticles as probes for lung cancer detection. Exp. Ther. Med. 14(4), 3407–3412 (2017). https://doi.org/10.3892/etm.2017.4988
C. Tseng, T. Wang, G. Dong, S.Y. Wu, T. Young et al., Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials 28, 3996–4005 (2007). https://doi.org/10.1016/j.biomaterials.2007.05.006
L. Yang, H. Mao, Y.A. Wang, Z. Cao, X. Peng et al., Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5(2), 235–243 (2009). https://doi.org/10.1002/smll.200800714
B. Zhang, Y. Hu, Z. Pang, Modulating the tumor microenvironment to enhance tumor nanomedicine delivery. Front. Pharmacol. 8, 1–16 (2017). https://doi.org/10.3389/fphar.2017.00952
K.T. Xenaki, S. Oliveira, P.M.P. van Bergen en Henegouwen, Antibody or antibody fragments: Implications for molecular imaging and targeted therapy of solid tumors. Front. Immunol. 8, 1287 (2017). https://doi.org/10.3389/fimmu.2017.01287
M.A.T. Groves, L. Amanuel, J.I. Campbell, D.G. Rees, S. Sridharan et al., Antibody VH and VL recombination using phage and ribosome display technologies reveals distinct structural routes to affinity improvements with VH-VL interface residues providing important structural diversity. MAbs 6, 236–245 (2014). https://doi.org/10.4161/mabs.27261
S. Awwad, U. Angkawinitwong, Overview of antibody drug delivery. Pharmaceutics 10, 1–24 (2018). https://doi.org/10.3390/pharmaceutics10030083
R. Adams, L. Griffin, J.E. Compson, M. Jairaj, T. Baker et al., Extending the half-life of a fab fragment through generation of a humanized anti-human serum albumin Fv domain: an investigation into the correlation between affinity and serum half-life. MAbs 8, 336–1346 (2016). https://doi.org/10.1080/19420862.2016.1185581
X. Peng, Y. Wang, D. Huang, Y. Wang, H.J. Shin et al., Targeted delivery of cisplatin to lung cancer using ScFvEGFR-heparin-cisplatin. ACS Nano 5, 9480–9493 (2011). https://doi.org/10.1021/nn202410f
R.M. Lu, Y.L. Chang, M.S. Chen, H.C. Wu, Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials 32, 3265–3274 (2011). https://doi.org/10.1016/j.biomaterials.2010.12.061
J.K. Myers, T.G. Oas, Preorganized secondary structure as an important determinant of fast protein folding. Nat. Struct. Biol. 8, 552–558 (2001). https://doi.org/10.1038/88626
F.Y. Frejd, K. Kim, Affibody molecules as engineered protein drugs. Exp. Mol. Med. 49, 1–8 (2017). https://doi.org/10.1038/emm.2017.35
J. Chaudhary, J. Bower, I.R. Corbin, Lipoprotein drug delivery vehicles for cancer: rationale and reason. Int. J. Mol. Sci. 20(24), 6327 (2019). https://doi.org/10.3390/ijms20246327
H. Lu, A biocompatible reconstituted high-density lipoprotein nano-system as a probe for lung cancer detection. Int. Med. J. Exp. Clin. Res. 21, 2726–2733 (2015). https://doi.org/10.12659/MSM.895255
X. Ma, Q. Song, X. Gao, Reconstituted high-density lipoproteins: novel biomimetic nanocarriers for drug delivery. Acta Pharm. Sin. B 8, 51–63 (2018). https://doi.org/10.1016/j.apsb.2017.11.006
S. Raut, L. Mooberry, N. Sabnis, A. Garud, A.S. Dossou et al., Reconstituted HDL: drug delivery platform for overcoming biological barriers to cancer therapy. Front. Pharmacol. 9, 1–12 (2018). https://doi.org/10.3389/fphar.2018.01154
M.A.A. Castro, F. Dal-Pizzol, S. Zdanov, M. Soares, C.B. Müller et al., CFL1 expression levels as a prognostic and drug resistance marker in nonsmall cell lung cancer. Cancer 116, 3645–3655 (2010). https://doi.org/10.1002/cncr.25125
F.C.G. de Aquino, T.M. Guedes, A. Pires, H.P. Souza, Serum biomarkers for lung cancer screening: improving early detection and diagnosis. Rev. Med. 98, 59–71 (2019)
M.J. Campa, M.Z. Wang, B. Howard, M.C. Fitzgerald, E.F. Patz, Protein expression profiling identifies macrophage migration inhibitory factor and cyclophilin A as potential molecular targets in non-small cell lung cancer. Cancer Res. 63, 1652–1656 (2003)
L. Wang, C. Dong, X. Li, W. Han, X. Su, Anticancer potential of bioactive peptides from animal sources (review). Oncol. Rep. 38, 637–651 (2017). https://doi.org/10.3892/or.2017.5778
E.J. McConnell, B. Devapatla, K. Yaddanapudi, K.R. Davis, The soybean-derived peptide lunasin inhibits non-small cell lung cancer cell proliferation by suppressing phosphorylation of the retinoblastoma protein. Oncotarget 6, 4649–4662 (2015). https://doi.org/10.18632/oncotarget.3080
G.M. Suarez-Jimenez, A. Burgos-Hernandez, J.M. Ezquerra-Brauer, Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar. Drugs 10, 963–986 (2012). https://doi.org/10.3390/md10050963
J. Thundimadathil, Cancer treatment using peptides: current therapies and future prospects. J. Amino Acids (2012). https://doi.org/10.1155/2012/967347
L. Yang, T. Mashima, S. Sato, M. Mochizuki, H. Sakamoto et al., Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res. 63, 831–837 (2003)
H. Hariu, Y. Hirohashi, T. Torigoe, H. Asanuma, M. Hariu et al., Aberrant expression and potency as a cancer immunotherapy target of inhibitor of apoptosis protein family, Livin/ML-IAP in lung cancer. Clin. Cancer Res. 11, 1000–1009 (2005)
G.E. Holt, P. Daftarian, Non-small-cell lung cancer homing peptide-labeled dendrimers selectively transfect lung cancer cells. Immunotherapy 10, 1349–1360 (2018). https://doi.org/10.2217/imt-2018-0078
W. Jin Jeong, J. Bu, L.J. Kubiatowicz, S.S. Chen, Y.S. Kim et al., Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Converg. 5, 1–18 (2018). https://doi.org/10.1186/s40580-018-0170-1
L.E. Scheeren, D.R. Nogueira-librelotto, L.B. Macedo, Transferrin-conjugated doxorubicin-loaded PLGA nanoparticles with pH-responsive behavior: a synergistic approach for cancer therapy. J. Nanopart. Res. 22(3), 1–18 (2020). https://doi.org/10.1007/s11051-020-04798-7
P. Upadhyay, S. Sarker, A. Ghosh, P. Gupta, S. Das et al., Transferrin ornamented thymoquinone loaded PEG-PLGA nanoparticle furnishes anticarcinogenic effect in non-small cell lung carcinoma through modulation of miR-34a and miR-16. Biomater. Sci. 7, 4325–4344 (2019). https://doi.org/10.1039/C9BM00912D
H. Thuy, Z. Chi, K. Yeol, C. Dai, Biointerfaces transferrin-conjugated pH-sensitive platform for effective delivery of porous palladium nanoparticles and paclitaxel in cancer treatment. Colloids Surf. B Biointerfaces 176, 265–275 (2019). https://doi.org/10.1016/j.colsurfb.2019.01.010
S. Raha, T. Paunesku, G. Woloschak, Peptide mediated cancer targeting of nanoconjugates. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 269–281 (2011). https://doi.org/10.1002/wnan.121
S. Hatakeyama, K. Sugihara, T.K. Shibata, J. Nakayama, T.O. Akama et al., Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc. Natl. Acad. Sci. USA 108(49), 19587–19592 (2011). https://doi.org/10.1073/pnas.1105057108
F. Chen, G. Huang, Sugar ligand-mediated drug delivery. Future Med. Chem. 12, 161–171 (2019). https://doi.org/10.4155/fmc-2019-0114
B. Jang, M.S. Moorthy, P. Manivasagan, L. Xu, Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer. Oncotarget 9, 12649–12661 (2018). https://doi.org/10.18632/oncotarget.23898
A.D. Keefe, S. Pai, A. Ellington, Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010). https://doi.org/10.1038/nrd3141
E. Zavyalova, A. Kopylov, DNA aptamer-based molecular nanoconstructions and nanodevices for diagnostics and therapy, in Nanostructures Engineering of Cells Tissues Organs. ed. by A.M. Grumezescu (Elsevier, Amsterdam, 2018), pp. 249–290. https://doi.org/10.1016/B978-0-12-813665-2.00007-7
Y.U. Zhang, J. Zhao, J. Sun, L.U. Huang, Q. Li, Targeting lung cancer initiating cells by all-trans retinoic acid-loaded lipid-PLGA nanoparticles with CD133 aptamers. Exp. Ther. Med. 16(6), 4639–4649 (2018). https://doi.org/10.3892/etm.2018.6762
H. Wang, X. Zhao, C. Guo, D. Ren, Y. Zhao, Aptamer-dendrimer bioconjugates for targeted delivery of miR-34a expressing plasmid and antitumor effects in non-small cell lung cancer cells. PLoS ONE 10(9), e0139136 (2015). https://doi.org/10.1371/journal.pone.0139136
F. Guo, Y. Hu, L. Yu, X. Deng, J. Meng et al., Enhancement of thermal damage to adenocarcinoma cells by iron nanoparticles modified with MUC1 aptamer. J. Nanosci. Nanotechnol. 16(3), 2246–2253 (2016). https://doi.org/10.1166/jnn.2016.10941
W. Ping, Y. Gao, Y. Lu, H. Zhang, C. Cai, High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer–silver–gold shell–core nanostructures. Analyst 138, 6501–6510 (2013). https://doi.org/10.1039/c3an01375h
X. Huang, J. Huang, D. Leng, S. Yang, Q. Yao et al., Gefitinib-loaded DSPE-PEG2000 nanomicelles with CD133 aptamers target lung cancer stem cells. World J. Surg. Oncol. 15, 1–10 (2017). https://doi.org/10.1186/s12957-017-1230-4
M. Alibolandi, M. Ramezani, K. Abnous, F. Hadizadeh, AS1411 aptamer-decorated biodegradable polyethylene glycol e poly (lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to nonsmall cell lung cancer in vitro. J. Pharm. Sci. 105(5), 1741–1750 (2016). https://doi.org/10.1016/j.xphs.2016.02.021
J.K. Herr, J.E. Smith, C.D. Medley, D. Shangguan, W. Tan, Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78, 2918–2924 (2006). https://doi.org/10.1021/ac052015r
C.D. Medley, S. Bamrungsap, W. Tan, J.E. Smith, Aptamer-conjugated nanoparticles for cancer cell detection. Anal. Chem. 83, 727–734 (2011). https://doi.org/10.1021/ac102263v
S.A. Rooney, Lung surfactant. Environ. Health Perspect. 55, 205–226 (1984). https://doi.org/10.2307/3429704
R.K. Harishchandra, M. Saleem, H.J. Galla, Nanoparticle interaction with model lung surfactant monolayers. J. R. Soc. Interface 7, S15-26 (2010). https://doi.org/10.1098/rsif.2009.0329.focus
W. Huang, Y. Lang, A. Hakeem, Y. Lei, L. Gan et al., Surfactin-based nanoparticles loaded with doxorubicin to overcome multidrug resistance in cancers. Int. J. Nanomed. 13, 1723–1736 (2018). https://doi.org/10.2147/IJN.S157368
A. Bakur, Y. Niu, H. Kuang, Q. Chen, Synthesis of gold nanoparticles derived from mannosylerythritol lipid and evaluation of their bioactivities. AMB Express 9, 62 (2019). https://doi.org/10.1186/s13568-019-0785-6
J. Zhang, W. Tao, Y. Chen, D. Chang, T. Wang, Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. J. Mater. Sci. Mater. Med. 26(4), 165 (2015). https://doi.org/10.1007/s10856-015-5498-z
M. Cheng, D. Ma, K. Zhi, B. Liu, W. Zhu, Synthesis of biotin-modified galactosylated chitosan nanoparticles and their characteristics in vitro and in vivo. Cell Physiol. Biochem. 50, 569–584 (2018). https://doi.org/10.1159/000494169
P.T. Wong, K. Sinniah, S.K. Choi, Riboflavin-conjugated multivalent dendrimer platform for cancer-targeted drug and gene delivery. Bioact. Eng. Nanopart. (2017). https://doi.org/10.1007/978-981-10-5864-6
S. Singh, N.K. Mehra, N.K. Jain, Development and characterization of the paclitaxel loaded riboflavin and thiamine conjugated carbon nanotubes for cancer treatment. Pharm. Res. 33, 1769–1781 (2016). https://doi.org/10.1007/s11095-016-1916-2
S.Y. Kim, S.H. Cho, Y.M. Lee, L.Y. Chu, Biotin-conjugated block copolymeric nanoparticles as tumor-targeted drug delivery systems. Macromol. Res. 15, 646–655 (2007). https://doi.org/10.1007/BF03218945
N.C. Fan, F.Y. Cheng, J.A.A. Ho, C.S. Yeh, Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew. Chem. Int. Ed. 51, 8806–8810 (2012). https://doi.org/10.1002/anie.201203339
C.Y. Wu, Y.C. Chen, Riboflavin immobilized Fe3O4 magnetic nanoparticles carried with n-butylidenephthalide as targeting-based anticancer agents. Artif. Cells Nanomed. Biotechnol. 47, 210–220 (2019). https://doi.org/10.1080/21691401.2018.1548473
P. Parashar, C.B. Tripathi, M. Arya, J. Kanoujia, M. Singh et al., Biotinylated naringenin intensified anticancer effect of gefitinib in urethane-induced lung cancer in rats: favourable modulation of apoptotic regulators and serum metabolomics. Artif. Cells Nanomed. Biotechnol. 46, S598–S610 (2018). https://doi.org/10.1080/21691401.2018.1505738
E.V. Khaydukov, K.E. Mironova, V.A. Semchishen, A.N. Generalova, Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep. 12(6), 35103 (2016). https://doi.org/10.1038/srep35103
Y. Dai, H. Xing, F. Song, Y. Yang, Z. Qiu et al., Biotin-conjugated multilayer poly [D, L-lactide-co-glycolide]-lecithin-polyethylene glycol nanoparticles for targeted delivery of doxorubicin. J. Pharm. Sci. 105, 2949–2958 (2016). https://doi.org/10.1016/j.xphs.2016.03.038
M.A. Quadir, S.W. Morton, L.B. Mensah, K. Shopsowitz, J. Dobbelaar et al., Ligand-decorated click polypeptide derived nanoparticles for targeted drug delivery applications. Nanotechnol. Biol. Med. 13, 1797–1808 (2017). https://doi.org/10.1016/j.nano.2017.02.010
N.K. Garg, P. Dwivedi, C. Campbell, R.K. Tyagi, Site specific/targeted delivery of gemcitabine through anisamide anchored chitosan/poly ethylene glycol nanoparticles: an improved understanding of lung cancer therapeutic intervention. Eur. J. Pharm. Sci. 47, 1006–1014 (2012). https://doi.org/10.1016/j.ejps.2012.09.012
L. Wang, J. Pei, Z. Cong, Y. Zou, T. Sun et al., Development of anisamide-targeted PEGegylated gold nanorods to deliver epirubicin for chemo-photothermal therapy in tumor-bearing mice. Int. J. Nanomed. 14, 1817–1833 (2019). https://doi.org/10.2147/IJN.S192520
X. Wang, H. Tang, C. Wang, J. Zhang, W. Wu et al., Phenylboronic acid-mediated tumor targeting of chitosan nanoparticles. Theranostics 6, 1378–1392 (2016). https://doi.org/10.7150/thno.15156
J. Lee, J. Kim, Y.M. Lee, D. Park, S. Im et al., Self-assembled nanocomplex between polymerized phenylboronic acid and doxorubicin for efficient tumor-targeted chemotherapy. Acta Pharmacol. Sin. 38, 848–858 (2017). https://doi.org/10.1038/aps.2017.16
Y. Baba, NanoBiodevices for cancer diagnosis, cancer therapy, and ips cell based regenerative medicine. (Japan Symposium 2015), https://www.gdch.de/fileadmin/downloads/Veranstaltungen/Tagungen/2014_Tagungen/analytica/abstracts/baba.pdf. Accessed 25 Oct 2020.
S. Kurbanoglu, B. Uslu, S.A. Ozkan, Nanobiodevices for Electrochemical Biosensing of Pharmaceuticals (Elsevier, Amsterdam, 2018). https://doi.org/10.1016/B978-0-12-813665-2.00008-9
Y. Kashimura, A. Oshima, K. Sumitomo, Fabrication of nanobiodevices that utilize the function of membrane proteins. NTT Tech. Rev. 1–14 (2016)
S. Li, Q. Jiang, S. Liu, Y. Zhang, Y. Tian et al., A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36(7), 258–264 (2018). https://doi.org/10.1038/nbt.4071
A.C. Hortelão, T. Patiño, A. Perez-Jiménez, À. Blanco, S. Sánchez, Enzyme-powered nanobots enhance anticancer drug delivery. Adv. Funct. Mater. 28, 1–10 (2018). https://doi.org/10.1002/adfm.201705086
T. Patino, R. Mestre, S. Sánchez, Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications. Lab Chip 16, 3626–3630 (2016). https://doi.org/10.1039/c6lc90088g
T. Yasui, N. Kaji, Y. Baba, Nanobiodevices for biomolecule analysis and imaging. Annu. Rev. Anal. Chem. 6, 83–96 (2013). https://doi.org/10.1146/annurev-anchem-062012-092619
A. Gao, X. Yang, J. Tong, L. Zhou, Y. Wang et al., Biosensors and bioelectronics multiplexed detection of lung cancer biomarkers in patients serum with CMOS-compatible silicon nanowire arrays. Biosens. Bioelectron. 91, 482–488 (2017). https://doi.org/10.1016/j.bios.2016.12.072
K.K. Jain, The role of nanobiotechnology in drug discover. Drug Discovery Today. 10(21), 1435–1442 (2005). https://doi.org/10.1016/S1359-6446(05)03573-7
R.L. Keith, Lung cancer chemoprevention. Proc. Am. Thorac. Soc. 9(2), 52–56 (2012). https://doi.org/10.1513/pats.201107-038MS
J. Soria, E.S. Kim, J. Fayette, S. Lantuejoul, E. Deutsch, W.K. Hong, Chemoprevention of lung cancer. Lancet Oncol. 4(11), 659–669 (2003). https://doi.org/10.1016/S1470-2045(03)01244-0
H. Oliveres, C. Caglevic, F. Passiglia, S. Taverna, E. Smits et al., Vaccine and immune cell therapy in non-small cell lung cancer. J. Thorac. Dis. 10, S1602–S1614 (2018). https://doi.org/10.21037/jtd.2018.05.134
U.K. Kar, M.K. Srivastava, Å. Andersson, F. Baratelli, M. Huang et al., Novel CCL21-vault nanocapsule intratumoral delivery inhibits lung cancer growth. PLoS ONE 6(5), e18758 (2011). https://doi.org/10.1371/journal.pone.0018758
C. Butts, M.A. Socinski, P.L. Mitchell, N. Thatcher, L. Havel et al., Tecemotide ( L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer ( START ): a randomised, double-blind, phase 3 trial. Lancet Oncol. 15(1), 59–68 (2014). https://doi.org/10.1016/S1470-2045(13)70510-2
R. Wen, A.C. Umeano, Y. Kou, J. Xu, A.A. Farooqi, Nanoparticle systems for cancer vaccine. Nanomedicine 14(5), 627–648 (2019). https://doi.org/10.2217/nnm-2018-0147
C. Butts, N. Murray, A. Maksymiuk, G. Goss, E. Marshall et al., Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J. Clin. Oncol. 23(27), 6674–6681 (2020). https://doi.org/10.1200/JCO.2005.13.011
A.J. Grippin, E.J. Sayour, D.A. Mitchell, Translational nanoparticle engineering for cancer vaccines. Oncoimmunology 6(10), e1290036 (2017). https://doi.org/10.1080/2162402X.2017.1290036
M. Fusciello, F. Fontana, S. Tähtinen, C. Capasso, S. Feola et al., Artificially cloaked viral nanovaccine for cancer immunotherapy. Nat. Commun. 10, 1–13 (2019). https://doi.org/10.1038/s41467-019-13744-8
T. Storni, C. Ruedl, K. Schwarz, R.A. Schwendener, W.A. Renner et al., Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J. Immunol. 172, 1777–1785 (2004). https://doi.org/10.4049/jimmunol.172.3.1777
K. Wilson, Y.K. Tam, Lipid-based delivery of CpG oligodeoxynucleotides for cancer immunotherapy. Expert Rev. 2, 181–193 (2009). https://doi.org/10.1586/17512433.2.2.181
S. Song, Y. Wang, Y. Zhang, F. Wang, Y. He et al., Augmented induction of CD8+ cytotoxic T-cell response and antitumor effect by DCs pulsed with virus-like particles packaging with CpG. Cancer Lett. 256, 90–100 (2007). https://doi.org/10.1016/j.canlet.2007.06.004
Z. Xu, S. Ramishetti, Y. Tseng, S. Guo, Y. Wang et al., Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. J. Control. Release 172, 259–265 (2013). https://doi.org/10.1016/j.jconrel.2013.08.021
Q. Chen, H. Bai, W. Wu, G. Huang, Y. Li, Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention. Nano Lett. 20(11), 11–21 (2019). https://doi.org/10.1021/acs.nanolett.9b02182
K. Chen, X. Cao, M. Li, Y. Su, H. Li et al., A TRAIL-delivered lipoprotein-bioinspired nanovector engineering stem cell-based platform for inhibition of lung metastasis of melanoma. Theranostics 9, 2984–2998 (2019). https://doi.org/10.7150/thno.31157
N. Dobrovolskienė, V. Pašukonienė, A. Darinskas, J.A. Kraśko, K. Žilionytė et al., Tumor lysate-loaded Bacterial Ghosts as a tool for optimized production of therapeutic dendritic cell-based cancer vaccines. Vaccine 36, 4171–4180 (2018). https://doi.org/10.1016/j.vaccine.2018.06.016
G. Sozzi, D. Conte, M. Leon, R. Cirincione, L. Roz et al., Quantification of free circulating DNA As a diagnostic marker in lung cancer. J. Clin. Oncol. 21, 3902–3908 (2003). https://doi.org/10.1200/JCO.2003.02.006
R. Valenti, V. Huber, P. Filipazzi, L. Pilla, G. Sovena et al., Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor- B-mediated suppressive activity on T lymphocytes. Cancer Res. 66(18), 9290–9298 (2006). https://doi.org/10.1158/0008-5472.CAN-06-1819
F. Andre, N.E.C. Schartz, M. Movassagh, C. Flament, P. Pautier et al., Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295–305 (2002). https://doi.org/10.1016/S0140-6736(02)09552-1
G. Rabinowits, C. Gerçel-Taylor, J.M. Day, D.D. Taylor, G.H. Kloecker, Exosomal microRNA: A diagnostic marker for lung cancer. Clin. Lung Cancer 10, 42–46 (2009). https://doi.org/10.3816/CLC.2009.n.006
M. Mitas, L. Hoover, G. Silvestri, C. Reed, M. Green et al., Lunx is a superior molecular marker for detection of non-small lung cell cancer in peripheral blood. J. Mol. Diagn. 5, 237–242 (2003). https://doi.org/10.1016/S15251578(10)60480-1
T.N. Zamay, G.S. Zamay, O.S. Kolovskaya, R.A. Zukov, M.M. Petrova et al., Current and prospective protein biomarkers of lung cancer. Cancers 9(11), 155 (2017). https://doi.org/10.3390/cancers9110155
J. Beane, J.D. Campbell, J. Lel, J. Vick, A. Spira, Genomic approaches to accelerate cancer interception. Lancet Oncol. 18(8), e494–e502 (2017). https://doi.org/10.1016/S1470-2045(17)30373-X
N. Hasan, R. Kumar, M.S. Kavuru, Lung cancer screening beyond low-dose computed tomography: the role of novel biomarkers. Lung 192, 639–648 (2014). https://doi.org/10.1007/s00408-014-9636-z
S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007). https://doi.org/10.1038/nature06385
A. Montazeri, C.R. Gillis, J. McEwen, Quality of life in patients with lung cancer: a review of literature from 1970 to 1995. Chest 113, 467–481 (1998). https://doi.org/10.1378/chest.113.2.467
J. Bar, M. Damianovich, G. Hout Siloni, E. Dar, Y. Cohen et al., Genetic mutation screen in early non-small-cell lung cancer (NSCLC) specimens. Clin. Lung Cancer 15, 159–165 (2014). https://doi.org/10.1016/j.cllc.2013.11.005
R. Salgia, Diagnostic challenges in non-small-cell lung cancer: an integrated medicine approach. Future Oncol. 11, 489–500 (2015). https://doi.org/10.2217/fon.14.275
L.V. Sequist, R.S. Heist, A.T. Shaw, P. Fidias, R. Rosovsky et al., Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann. Oncol. 22, 2616–2624 (2011). https://doi.org/10.1093/annonc/mdr489
I.S. Hagemann, S. Devarakonda, C.M. Lockwood, D.H. Spencer, Clinical next-generation sequencing in patients with non-small cell lung cancer. Cancer (2015). https://doi.org/10.1002/cncr.29089
F. Montani, M.J. Marzi, F. Dezi, E. Dama, R.M. Carletti et al., miR-Test: a blood test for lung cancer early detection. J. Natl. Cancer Inst. 107, 6 (2015). https://doi.org/10.1158/1538-7445.AM2015-1573
S.K. Sahoo, V. Labhasetwar, Nanotech approaches to drug delivery and imaging. Drug Discov. Today 8, 1112–1120 (2003). https://doi.org/10.1016/S1359-6446(03)02903-9
J. Zhang, Y. Cao, Aptasensrs, Nano-Inspired Biosensors for Protein Assay with Clinical Applications ( Elsevier, Amsterdam, 2019), pp. 139–166. https://doi.org/10.1016/b978-0-12-815053-5.00006-4
J. Xu, S. Zhang, W. Zhang, E. Xie, M. Gu et al., SP70-targeted imaging for the early detection of lung adenocarcinoma. Sci. Rep. 10, 1–8 (2020). https://doi.org/10.1038/s41598-020-59439-9
P. Cai, D. Su, W. Yang, Z. He, C. Zhang et al., Inherently PET/CT dual modality imaging lipid nanocapsules for early detection of orthotopic lung tumors. ACS Appl. Bio-Mater. 3, 611–621 (2020). https://doi.org/10.1021/acsabm.9b00993
S.H. Yoon, J.M. Goo, S.M. Lee, C.M. Park, H.J. Seo et al., Positron emission tomography/magnetic resonance imaging evaluation of lung cancer. J. Thorac. Imaging 29, 4–16 (2014). https://doi.org/10.1097/rti.0000000000000062
L. Xia, X. Guo, T. Liu, X. Xu, J. Jiang et al., Multimodality imaging of naturally active melanin nanoparticles targeting somatostatin receptor subtype 2 in human small-cell lung cancer. Nanoscale 11(30), 14400–14409 (2019). https://doi.org/10.1039/c9nr04371c
B.C. Chen, Y.S. Munot, S.B. Salunke, Y. Wang, R. Lin et al., A triantennary dendritic galactoside-capped nanohybrid with a ZnS/CdSe nanoparticle core as a hydrophilic, fluorescent, multivalent probe for metastatic lung cancer cells. Adv. Funct. Mater. 18(4), 527–540 (2008). https://doi.org/10.1002/adfm.200700449
Y. Yang, M. Lyu, J.H. Li, D.M. Zhu, Y.F. Yuan et al., Ultra-small bimetallic iron-palladium (FePd) nanoparticle loaded macrophages for targeted tumor photothermal therapy in NIR-II biowindows and magnetic resonance imaging. RSC Adv. 9, 33378–33387 (2019). https://doi.org/10.1039/c9ra05649a
Y. Li, J. Xuan, Y. Song, W. Qi, B. He et al., Nanoporous glass integrated in volumetric bar-chart chip for point-of-care diagnostics of non-small cell lung cancer. ACS Nano 10(1), 1640–1647 (2016). https://doi.org/10.1021/acsnano.5b07357
Y. Huang, Y. Li, Cancer nanobiotechnolgy. Acta Pharmacol. Sin. 38(6), 735–737 (2017). https://doi.org/10.1038/aps.2017.48
D.M. Valcourt, J. Harris, R.S. Riley, M. Dang, J. Wang, E.S. Day, Advances in targeted nanotherapeutics: from bioconjugation to biomimicry. Nano Res. 11, 4999–5016 (2018). https://doi.org/10.1007/s12274-018-2083-z
A. Parodi, R. Molinaro, M. Sushnitha, M. Evangelopoulos, J.O. Martinez et al., Biomaterials bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials 147, 155–168 (2017). https://doi.org/10.1016/j.biomaterials.2017.09.020
A. Pasto, F. Giordano, M. Evangelopoulos, A. Amadori, E. Tasciotti, Cell membrane protein functionalization of nanoparticles as a new tumor-targeting strategy. Clin. Transl. Med. 8(1), 1–9 (2019). https://doi.org/10.1186/s40169019-0224-y
J. Du, L.A. Lane, S. Nie, Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release 219, 205–214 (2015). https://doi.org/10.1016/j.jconrel.2015.08.050
B. Chen, W. Dai, B. He, H. Zhang, X. Wang et al., Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7, 538–558 (2017). https://doi.org/10.7150/thno.16684
X. Sun, J. Li, C. Guo, H. Xing, J. Xu et al., Pharmacokinetic effects of curcumin on docetaxel mediated by OATP1B1, OATP1B3 and CYP450s. Drug Metab. Pharmacokinet. 31, 269–275 (2016). https://doi.org/10.1016/j.dmpk.2016.02.005
Y.W. Kong, E.C. Dreaden, P.T. Hammond, M.B. Yaffe, Exploiting Nanocarriers for Combination Cancer Therapy. Intracecuular Delivery (Springer, Cham, 2016), pp. 375–402. https://doi.org/10.1007/978-3-319-43525-1
Z. Binkhathlan, A. Lavasanifar, P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: current status and future perspectives. Curr. Cancer Drug Targets 12, 326–346 (2013). https://doi.org/10.2174/15680096113139990076
J. He, C. Gong, J. Qin, M. Li, S. Huang, Cancer cell membrane decorated silica nanoparticle loaded with miR495 and doxorubicin to overcome drug resistance for effective lung cancer therapy. Nanoscale Res. Lett. 14(1), 339 (2019)
S. Rawal, M.M. Patel, Threatening cancer with nanoparticle aided combination oncotherapy. J. Control. Release 301, 76–109 (2019). https://doi.org/10.1016/j.jconrel.2019.03.015
H. Wu, Y. Xin, J. Zhao, D. Sun, W. Li et al., Metronomic docetaxel chemotherapy inhibits angiogenesis and tumor growth in a gastric cancer model. Cancer Chemother. Pharmacol. 68, 879–887 (2011). https://doi.org/10.1007/s00280-011-1563-6
X. Liu, D. Wang, P. Zhang, Y. Li, Recent advances in nanosized drug delivery systems for overcoming the barriers to anti-PD immunotherapy of cancer. Nano Today 29, 100801 (2019). https://doi.org/10.1016/j.nantod.2019.100801
S. Burgio, L. Noori, A. Marino Gammazza, C. Campanella, M. Logozzi et al., Extracellular vesicles-based drug delivery systems: a new challenge and the exemplum of malignant pleural mesothelioma. Int. J. Mol. Sci. 15, 5432 (2020). https://doi.org/10.3390/ijms21155432
K. Sakura, C. Lee, Y. Kaneda, T. Nakano, S. Atagi et al., Hemagglutinating virus of japan envelope (HVJ-E: inactivated viral nanoparticles) against chemotherapy-resistant pleural mesothelioma. J. Thorac. Oncol. 13, S606–S607 (2018). https://doi.org/10.1016/j.jtho.2018.08.921
Y. Sakurai, A. Kato, Y. Hida, J. Hamada, N. Maishi et al., Synergistic enhancement of cellular uptake with CD44-expressing malignant pleural mesothelioma by combining cationic liposome and hyaluronic acid–lipid conjugate. J. Pharm. Sci. 108, 3218–3224 (2019). https://doi.org/10.1016/j.xphs.2019.06.012
A. Singh, P. Majumder, J. Schneider, C.D. Hoang, Presented at Proceedings of the Annual Meeting of the American Association for Cancer Research. A novel peptide based microRNA nanoparticle hydrogel composite attenuates mesothelioma growth, Philadelphia (PA) (April and Jun, 2020)
Y. Huang, J. Gu, Z. Yan, X. Hu, D. He et al., Cytomembrane-mimicking nanocarriers with a scaffold consisting of a CD44-targeted endogenous component for effective asparaginase supramolecule delivery. Nanoscale 12, 12083–12097 (2020). https://doi.org/10.1039/D0NR02588G
R.J. Whitener, J. Wower, M. Byrne, Avidity-driven targeting of a novel biohybrid nanoscale carrier engineered for high therapeutic payload and extended release of anticancer drugs to treat small cell lung cancer, in Food, Pharmaceutical and Bioengineering Division 2014-Core Programming Area at the 2014 AIChE Annual Meeting, 2014 Jan 1. AIChE (2014)
P. Mathur, S. Sharma, S. Rawal, B. Patel, M.M. Patel, Fabrication, optimization and invitro evaluation of long chain lipid based PEGylated NLCs for oral delivery of docetaxel in lung cancer. J. Liposome Res. 30(2), 182–196 (2020). https://doi.org/10.1080/08982104.2019.1614055
P. Lv, W. Wei, H. Yue, T. Yang, L. Wang, Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules 12(12), 4230–4239 (2011). https://doi.org/10.1021/bm2010774
I. Kim, H. Jun, T. Hyung, E. Seong, K. Taek et al., Biomaterials doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials 34, 6444–6453 (2013). https://doi.org/10.1016/j.biomaterials.2013.05.018
A. Garg, N.K. Sahu, A.K. Yadav, Usnic acid-loaded bioinspired heparin modified-cellulose acetate phthalate nanoparticle (s) as an efficient carrier for site-specific delivery in lung cancer cells. Int. J. Pharm. Investig. 8(2), 53–62 (2018). https://doi.org/10.4103/jphi.JPHI
E.J. Kwon, J.H. Lo, S.N. Bhatia, Smart nanosystems: bio-inspired technologies that interact with the host environment. Proc. Natl. Acad. Sci. USA 112(47), 14460–14466 (2015). https://doi.org/10.1073/pnas.1508522112
R. Rosiere, M. Van Woensel, M. Gelbcke, V. Mathieu, J. Hecq et al., A new folate-grafted chitosan derivative to improve the delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumour therapy by inhalation. Mol. Pharm. 15(3), 899–910 (2018). https://doi.org/10.1021/acs.molpharmaceut.7b00846
J.A. MacDiarmid, N.B. Mugridge, J.C. Weiss, L. Phillips, A.L. Burn et al., Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell 11, 431–445 (2007). https://doi.org/10.1016/j.ccr.2007.03.012
G. Chen, Y. Zhang, H. Deng, Z. Tang, J. Mao, L. Wang, Pursuing for the better lung cancer therapy effect: comparison of two different kinds of hyaluronic acid and nitroimidazole co-decorated nanomedicines. Biomed. Pharmacother. 125, 1–11 (2020). https://doi.org/10.1016/j.biopha.2020.109988
C. Chi, F. Li, H. Liu, S. Feng, Docetaxel-loaded biomimetic nanoparticles for targeted lung cancer therapy in vivo. J. Nanopart. Res. 21, 1–10 (2019). https://doi.org/10.1007/s11051-019-4580-8
H. Wang, Z. Wang, Y. Tu, Y. Li, T. Xu et al., Homotypic targeting upconversion nano-reactor for cascade cancer starvation and deep-tissue phototherapy. Biomaterials 235, 119765 (2020). https://doi.org/10.1016/j.biomaterials.2020.119765
X. Ouyang, X. Wang, H. Kraatz, S. Ahmadi, J. Gao et al., A Trojan horse biomimetic delivery strategy using mesenchymal stem cells for PDT/PTT therapy against lung melanoma metastasis. Biomater. Sci. 8(4), 1160–1170 (2020). https://doi.org/10.1039/c9bm01401b
W. Cao, B. Liu, F. Xia, M. Duan, Y. Hong et al., MnO2@ Ce6-loaded mesenchymal stem cells as an “oxygen-laden guided-missile” for the enhanced photodynamic therapy on lung cancer. Nanoscale 12, 3090–3102 (2020). https://doi.org/10.1039/C9NR07947E
C. Chiang, Y. Lin, R. Lee, Y. Lai, H. Cheng et al., Combination of fucoidan-based magentic nanoparticles and immunomodulators enhances tumor-localized immunotherapy. Nat. Nanotechnol. 13, 764–754 (2018). https://doi.org/10.1038/s41565-018-0146-7
A. Ohradanova-Repic, E. Nogueira, I. Hartl, A.C. Gomes, A. Preto et al., Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. Nanomed. Nanotechnol. Biol. Med. 14, 123–130 (2018). https://doi.org/10.1016/j.nano.2017.09.003
B. Li, H.U.I. Lin, J. Fan, J. Lan, Y. Zhong et al., CD59 is overexpressed in human lung cancer and regulates apoptosis of human lung cancer cells. Int. J. Oncol. 43(3), 850–858 (2013). https://doi.org/10.3892/ijo.2013.2007
M. Moro, D. Di Paolo, M. Milione, G. Centonze, V. Bornaghi et al., Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J. Control. Release 308, 44–56 (2019). https://doi.org/10.1016/j.jconrel.2019.07.006
P. Zarogouldis, N.K. Karamanos, K. Porpodis, K. Domvri, H. Huang et al., Vectors for inhaled gene therapy in lung cancer. Application for Nano oncology and safety of bio nanotechnology. Int. J. Mol. Sci. 13, 10828–10862 (2012). https://doi.org/10.3390/ijms130910828
Y. Yan, L. Liu, H. Xiong, J.B. Miller, K. Zhou et al., Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc. Natl. Acad. Sci. USA 113, E5702–E5710 (2016). https://doi.org/10.1073/pnas.1606886113
M.M.A. Elwakil, I.A. Khalil, Y.H.A. Elewa, K. Kusumoto, Lung-endothelium-targeted nanoparticles based on a pH-sensitive lipid and the GALA peptide enable robust gene silencing and the regression of metastatic lung cancer. Adv. Funct. Mater. 1807677, 1–13 (2019). https://doi.org/10.1002/adfm.201807677
P. Merckx, L. De Backer, L. Van Hoecke, R. Guagliardo, M. Echaide et al., Surfactant protein B (SP-B) enhances the cellular siRNA delivery of proteolipid coated nanogels for inhalation therapy. Acta Biomater. 78, 236–246 (2018). https://doi.org/10.1016/j.actbio.2018.08.012
C. Lian, J. Zhang, B. Ruan, K. Ying, Near infrared light-actuated PEG wrapping carbon nanodots loaded cisplatin for targeted therapy of lung cancer therapy. J. Clust. Sci. (2020). https://doi.org/10.1007/s10876-020-01769-9
M. Reda, W. Ngamcherdtrakul, S. Gu, D.S. Bejan, N. Siriwon et al., PLK1 and EGFR targeted nanoparticle as a radiation sensitizer for non-small cell lung cancer. Cancer Lett. 467, 9–18 (2019). https://doi.org/10.1016/j.canlet.2019.09.014
A.R. Travis, V.A. Liau, A.C. Agrawal, D.E. Cliffel, Small gold nanoparticles presenting linear and looped Cilengitide analogues as radiosensitizers of cells expressing α ν β 3 integrin. J. Nanopart. Res. 19, 361 (2017)
V.S. Marangoni, J.C. Bernardi, I.B. Reis, W.J. Fa, Photothermia and activated drug release of natural cell membrane coated plasmonic gold nanorods and β-lapachone. ACS Appl. Biomater. 2, 728–736 (2019). https://doi.org/10.1021/acsabm.8b00603
F. Li, Y. Wang, W. Chen, D. Wang, Y. Zhou et al., Co-delivery of VEGF siRNA and etoposide for enhanced anti-angiogenesis and anti-proliferation effect via multi-functional nanoparticles for orthotopic non-small cell lung cancer treatment. Theranostics 9, 5886–5898 (2019). https://doi.org/10.7150/thno.32416
W. Song, J. Kuang, C. Li, M. Zhang, Enhanced immunotherapy based on photodynamic therapy for both primary and lung metastasis tumor eradication enhanced immunotherapy based on photodynamic therapy for both primary and lung metastasis tumor eradication. ACS Nano 12(2), 1978–1989 (2018). https://doi.org/10.1021/acsnano.7b09112
X. Liu, X. Cheng, F. Wang, L. Feng, Y. Wang et al., Targeted delivery of SNX-2112 by polysaccharide-modified graphene oxide nanocomposites for treatment of lung cancer. Carbohydr. Polym. 185, 85–95 (2018). https://doi.org/10.1016/j.carbpol.2018.01.014
T. Yokoyama, J. Tam, S. Kuroda, A.W. Scott, J. Aaron et al., EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells. PLoS ONE 6, e25507 (2011). https://doi.org/10.1371/journal.pone.0025507
K.L. Robertson, C.M. Soto, M.J. Archer, O. Odoemene, J.L. Liu, Engineered T4 viral nanoparticles for cellular imaging and flow cytometry. Bioconjug. Chem. 22, 595–604 (2011). https://doi.org/10.1021/bc100365j
S.-D. Lii, L. Huang, Surface-modified LPD nanoparticles for tumor targeting. Ann. N. Y. Acad. Sci. 8, 1–8 (2006). https://doi.org/10.1196/annals.1348.001
S.A. Meenach, K.W. Anderson, J.Z. Hilt, R.C. McGarry, H.M. Mansour, High-performing dry powder inhalers of paclitaxel DPPC/DPPG lung surfactant-mimic multifunctional particles in lung cancer: physicochemical characterization, in vitro aerosol dispersion, and cellular studies. AAPS PharmSciTech 15, 1574–1587 (2014). https://doi.org/10.1208/s12249-014-0182-z
L. Cheng, F.Z. Huang, L.F. Cheng, Y.Q. Zhu, Q. Hu et al., GEII-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation. Int. J. Nanomed. 9, 921–935 (2014). https://doi.org/10.2147/IJN.S53310
C. Lin, X. Zhang, H. Chen, Z. Bian, G. Zhang et al., Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv. 25, 256–266 (2018). https://doi.org/10.1080/10717544.2018.1425777
H. Ujiie, L. Ding, R. Fan, Porphyrin–high-density lipoprotein: a novel photosensitizing nanoparticle for lung cancer therapy. Ann. Thorac. Surg. 107, 369–377 (2019). https://doi.org/10.1016/j.athoracsur.2018.08.053
W. Liu, M. Ruan, Y. Wang, R. Song, X. Ji et al., Light-triggered biomimetic nanoerythrocyte for tumor-targeted lung metastatic combination therapy of malignant melanoma. Small (Nano Micro) 1801754, 1–15 (2018). https://doi.org/10.1002/smll.201801754
K. Ding, C. Zheng, L. Sun, X. Liu, Y. Yin et al., NIR light-induced tumor phototherapy using ICG delivery system based on platelet-membrane-camouflaged hollow bismuth selenide nanoparticles. Chin. Chem. Lett. 31(5), 1168–1172 (2019). https://doi.org/10.1016/j.cclet.2019.10.040
R. Meir, K. Shamalov, O. Betzer, M. Motiei, M. Horovitz et al., Nanomedicine for cancer immunotherapy: tracking cancer- specific T-cells in vivo with gold nanoparticles and CT imaging nanomedicine for cancer immunotherapy: tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano (2015). https://doi.org/10.1021/acsnano.5b01939
J. Conde, C. Bao, Y. Tan, D. Cui, E.R. Edelman et al., Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells. Adv. Funct. Meter. 25, 4183–4194 (2015). https://doi.org/10.1002/adfm.201501283
N.N. Parayath, A. Parikh, M.M. Amiji, Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating MicroRNA-125b. Nano Lett. 18, 3571–3579 (2018). https://doi.org/10.1021/acs.nanolett.8b00689
A. Mukherjee, J. Bhattacharyya, M.V. Sagar, A. Chaudhuri, Liposomally encapsulated CDC20 siRNA inhibits both solid melanoma tumor growth and spontaneous growth of intravenously injected melanoma cells on mouse lung. Drug Deliv. Transl. Res. 3, 224–234 (2013). https://doi.org/10.1007/s13346-013-0141-3
S. Ganesh, A.K. Iyer, D.V. Morrissey, M.M. Amiji, Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials 34, 3489–3502 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.077
X. Zhang, Q. Wang, L. Qin, H. Fu, Y. Fang et al., EGF-modified mPEG-PLGA-PLL nanoparticle for delivering doxorubicin combined with Bcl-2 siRNA as a potential treatment strategy for lung cancer EGF-modified mPEG-PLGA-PLL nanoparticle for delivering doxorubicin combined with Bcl-2 siRNA as a potential treatment. Drug Deliv. (2016). https://doi.org/10.3109/10717544.2015.1126769
S. Shi, M. Zhou, X. Li, M. Hu, C. Li et al., Synergistic active targeting of dually integrin αvβ3/CD44-targeted nanoparticles to B16F10 tumors located at different sites of mouse bodies. J. Control. Release 235, 1–13 (2016). https://doi.org/10.1016/j.jconrel.2016.05.050
T. Tan, H. Hu, H. Wang, J. Li, Z. Wang et al., Bioinspired lipoproteins-mediated photothermia remodels tumro stroma to improve cancer cell accessibility of second nanoparticles. Nat. Commun. 10, 1–17 (2019). https://doi.org/10.1038/s41467-019-11235-4
Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng et al., Photothermal therapy with immune adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 1–13 (2016). https://doi.org/10.1038/ncomms13193
Y.F. Wu, H.C. Wu, C.H. Kuan, C.J. Lin, L.W. Wang et al., Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep21170
X.L. Song, R.J. Ju, Y. Xiao, X. Wang, S. Liu et al., Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer. Int. J. Nanomed. 12, 7433–7451 (2017). https://doi.org/10.2147/IJN.S141787
A. Mukherjee, M. Paul, S. Mukherjee, Recent progress in the theranostics application of nanomedicine in lung Cancer. Cancers 11, 1–18 (2019). https://doi.org/10.3390/cancers11050597
M. Shevtsov, S. Stangl, B. Nikolaev, L. Yakovleva, Y. Marchenko et al., Granzyme B functionalized nanoparticles targeting membrane Hsp70-positive tumors for multimodal cancer theranostics. Small 15(13), 1–14 (2019). https://doi.org/10.1002/smll.201900205
F.D. Duman, Y. Akkoc, G. Demirci, N. Bavili, Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag2S quantum dots. J. Mater. Chem. B 7(46), 7363–7376 (2019). https://doi.org/10.1039/c9tb01602c
C. Li, X. Yang, J. An, K. Cheng, X. Hou et al., Red blood cell membrane-enveloped O2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics 10, 867–879 (2020). https://doi.org/10.7150/thno.37930
M.H. Chan, W.T. Huang, J. Wang, R.S. Liu, M. Hsiao, Next-generation cancer-specific hybrid theranostic nanomaterials: MAGE-A3 NIR persistent luminescence nanoparticles conjugated to afatinib for in situ suppression of lung adenocarcinoma growth and metastasis. Adv. Sci. (2020). https://doi.org/10.1002/advs.201903741
M. Bjo, K.J. Thurecht, M. Michael, A.M. Scott, F. Caruso, Bridging bio-nano science and cancer nanomedicine. ACS Nano 11, 9594–9613 (2017). https://doi.org/10.1021/acsnano.7b0485