Binomial edge ideals with pure resolutions

Dariush Kiani1,2, Sara Saeedi Madani1,2
1School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
2Department of Pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cox, D.A., Erskine, A.: On closed graphs. Preprint, (2013), arXiv:1306.5149

Dokuyucu, A.: Extremal Betti numbers of some classes of binomial edge ideals. Preprint, (2013), arXiv:1310.2903

Ene, V., Herzog, J., Hibi, T.: Cohen–Macaulay binomial edge ideals. Nagoya Math. J. 204, 57–68 (2011)

Ene, V., Herzog, J., Hibi, T., Qureshi, A.A.: The binomial edge ideal of a pair of graphs. Nagoya Math. J. 213, 105–125 (2014)

Ene, V., Zarojanu, A.: On the regularity of binomial edge ideals. Math. Nachr. (2013)

Herzog, J., Hibi, T.: Monomial Ideals, Graduate Texts in Mathematics 260. Springer, (2010)

Herzog, J., Hibi, T., Hreinsdotir, F., Kahle, T., Rauh, J.: Binomial edge ideals and conditional independence statements. Adv. Appl. Math. 45, 317–333 (2010)

Kiani, D., Saeedi Madani, S.: The regularity of binomial edge ideals of graphs. arXiv:1310.6126v2 (submitted)

Matsuda, K., Murai, S.: Regularity bounds for binomial edge ideals. J. Commut. Algebra 5(1), 141–149 (2013)

Mohammadi, F., Sharifan, L.: Hilbert function of binomial edge ideals. Commun. Algebra 42(2), 688–703 (2014)

Ohtani, M.: Graphs and ideals generated by some 2-minors. Commun. Algebra 39, 905–917 (2011)

Roth, M., Van Tuyl, A.: On the linear strand of an edge ideal. Commun. Algebra 35, 821–832 (2007)

Saeedi Madani, S., Kiani, D.: Binomial edge ideals of graphs. Electro. J. Comb. 19(2), P44 (2012)

Saeedi Madani, S., Kiani, D.: On the binomial edge ideal of a pair of graphs. Electro. J. Comb. 20(1), P48 (2013)

Schenzel, P., Zafar, S.: Algebraic properties of the binomial edge ideal of a complete bipartite graph. An. St. Univ. Ovidius Constanta. Ser. Mat.

Zahid, Z., Zafar, S.: On the Betti numbers of some classes of binomial edge ideals. Electro. J. Comb. 20(4), P37 (2013)

Zafar, S.: On approximately Cohen–Macaulay binomial edge ideal. Bull. Math. Soc. Sci. Math. Roum. 55(103), 429–442 (2012)