Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Năng lượng liên kết của bipolaron từ tính trong chuỗi rối loạn
Tóm tắt
Chúng tôi xem xét một chuỗi rối loạn chứa các hạt lượng tử tạo thành bipolaron do sự tương tác với kích thích từ tính và nghiên cứu cách năng lượng liên kết phụ thuộc vào cường độ của sự rối loạn. Chúng tôi chứng minh rằng sự rối loạn có thể làm tăng hoặc giảm năng lượng liên kết, tùy thuộc vào năng lượng động học của các hạt cũng như mật độ bipolaron và khoảng cách tương tác ghép đôi. Chúng tôi trình bày các kết quả số thu được cho các chuỗi t-J và cho các hạt tương tác với boson cứng và thảo luận về các mô hình đơn giản hóa giải thích các cơ chế vật lý thiết yếu. Chúng tôi rút ra một công thức cho sự phụ thuộc của năng lượng liên kết vào sự rối loạn trong giới hạn tĩnh.
Từ khóa
#bipolaron #năng lượng liên kết #chuỗi rối loạn #kích thích từ tính #mô hình t-J #boson cứngTài liệu tham khảo
Ma, M., Lee, P.A.: Localized superconductors. Phys. Rev. B 32, 5658–5667 (1985). https://doi.org/10.1103/PhysRevB.32.5658
Kapitulnik, A., Kotliar, G.: Anderson localization and the theory of dirty superconductors. Phys. Rev. Lett. 54, 473–476 (1985). https://doi.org/10.1103/PhysRevLett.54.473
Kotliar, G., Kapitulnik, A.: Anderson localization and the theory of dirty superconductors. ii. Phys. Rev. B 33, 3146–3157 (1986). https://doi.org/10.1103/PhysRevB.33.3146
Bulaevskii, L.N., Sadovskii, M.V.: Anderson localization and superconductivity. J. Low Temp. Phys. 59(1), 89–113 (1985). https://doi.org/10.1007/BF00681506
Sadovskii, M.V.: Superconductivity and localization. Phys. Rep. 282(5), 225–348 (1997). https://doi.org/10.1016/S0370-1573(96)00036-1https://doi.org/http://www.sciencedirect.com/science/article/pii/S0370157396000361
Feigel’man, M.V., Ioffe, L.B.: Superfluid density of a pseudogapped superconductor near the superconductor-insulator transition. Phys. Rev. B 92, 100,509 (2015). https://doi.org/10.1103/PhysRevB.92.100509
Sherman, D., Pracht, U.S., Gorshunov, B., Poran, S., Jesudasan, J., Chand, M., Raychaudhuri, P., Swanson, M., Trivedi, N., Auerbach, A., Scheffler, M., Frydman, A., Dressel, M.: The Higgs mode in disordered superconductors close to a quantum phase transition. Nat. Phys. 11(2), 188–192 (2015). https://doi.org/10.1038/nphys3227
Feigel’man, M.V., Ioffe, L.B., Mézard, M.: Superconductor-insulator transition and energy localization. Phys. Rev. B 82, 184,534 (2010). https://doi.org/10.1103/PhysRevB.82.184534
Lin, Y.H., Goldman, A.M.: Hard energy gap in the insulating regime of nominally granular films near the superconductor-insulator transition. Phys. Rev. B 82, 214,511 (2010). https://doi.org/10.1103/PhysRevB.82.214511
Kamar, N.A., Vidhyadhiraja, N.S.: Site-disorder driven supercon ductor–insulator transition: a dynamical mean field study. J. Phys. Condens. Matter 26(9), 095,701 (2014). https://doi.org/10.1088/0953-8984/26/9/095701
Tarat, S., Majumdar, P.: Charge dynamics across the disorder-driven superconductor-insulator transition. EPL (Europhysics Letters) 105(6), 67,002 (2014). https://doi.org/10.1209/0295-5075/105/67002
Seibold, G., Benfatto, L., Castellani, C.: Application of the Mattis-Bardeen theory in strongly disordered superconductors. Phys. Rev. B 96, 144,507 (2017). https://doi.org/10.1103/PhysRevB.96.144507
Ghosal, A., Randeria, M., Trivedi, N.: Role of spatial amplitude fluctuations in highly disordered s-wave superconductors. Phys. Rev. Lett. 81, 3940–3943 (1998). https://doi.org/10.1103/PhysRevLett.81.3940
Ghosal, A., Randeria, M., Trivedi, N.: Inhomogeneous pairing in highly disordered s-wave superconductors. Phys. Rev. B 65, 014,501 (2001). https://doi.org/10.1103/PhysRevB.65.014501
Tan, K.H.S.B., Parendo, K.A., Goldman, A.M.: Evidence of spatially inhomogeneous pairing on the insulating side of a disorder-tuned superconductor-insulator transition. Phys. Rev. B 78, 014,506 (2008). https://doi.org/10.1103/PhysRevB.78.014506
Dubi, Y., Meir, Y., Avishai, Y.: Island formation in disordered superconducting thin films at finite magnetic fields. Phys. Rev. B 78, 024,502 (2008). https://doi.org/10.1103/PhysRevB.78.024502
Swanson, M., Loh, Y.L., Randeria, M., Trivedi, N.: Dynamical conductivity across the disorder-tuned superconductor-insulator transition. Phys. Rev. X 4, 021,007 (2014). https://doi.org/10.1103/PhysRevX.4.021007
Chakraborty, D., Sensarma, R., Ghosal, A.: Effects of strong disorder in strongly correlated superconductors. Phys. Rev. B 95, 014,516 (2017). https://doi.org/10.1103/PhysRevB.95.014516
Maccari, I., Benfatto, L., Castellani, C.: Broadening of the Berezinskii-Kosterlitz-Thouless transition by correlated disorder. Phys. Rev. B 96, 060,508 (2017). https://doi.org/10.1103/PhysRevB.96.060508
Seibold, G., Benfatto, L., Castellani, C., Lorenzana, J.: Amplitude, density, and current correlations of strongly disordered superconductors. Phys. Rev. B 92, 064,512 (2015). https://doi.org/10.1103/PhysRevB.92.064512
Kang, Y.T., Tsai, W.F., Yao, D.X.: Modulation of pairing symmetry with bond disorder in unconventional superconductors. Phys. Rev. B 95, 134,513 (2017). https://doi.org/10.1103/PhysRevB.95.134513
Sacépé, B., Chapelier, C., Baturina, T.I., Vinokur, V.M., Baklanov, M.R., Sanquer, M.: Disorder-induced inhomogeneities of the superconducting state close to the superconductor-insulator transition. Phys. Rev. Lett. 101, 157,006 (2008). https://doi.org/10.1103/PhysRevLett.101.157006
Feigel’man, M.V., Ioffe, L.B., Kravtsov, V.E., Cuevas, E.: Fractal superconductivity near localization threshold. Ann. Phys. 325(7), 1390–1478 (2010). https://doi.org/10.1016/j.aop.2010.04.001. July 2010 Special Issue
Bouadim, K., Loh, Y.L., Randeria, M., Trivedi, N.: Single- and two-particle energy gaps across the disorder-driven superconductor–insulator transition. Nat. Phys. 7(11), 884–889 (2011). https://doi.org/10.1038/nphys2037
Cao, Y., Gao, X., Liu, X.-J., Hu, H.: Anderson localization of cooper pairs and Majorana fermions in an ultracold atomic fermi gas with synthetic spin-orbit coupling. Phys. Rev. A 93, 043,621 (2016). https://doi.org/10.1103/PhysRevA.93.043621
Dubouchet, T., Sacépé, B, Seidemann, J., Shahar, D., Sanquer, M., Chapelier, C.: Collective energy gap of preformed cooper pairs in disordered superconductors. Nat. Phys. 15(3), 233–236 (2019). https://doi.org/10.1038/s41567-018-0365-8
Burmistrov, I.S., Gornyi, I.V., Mirlin, A.D.: Local density of states and its mesoscopic fluctuations near the transition to a superconducting state in disordered systems. Phys. Rev. B 93, 205,432 (2016). https://doi.org/10.1103/PhysRevB.93.205432
Dentelski, D., Frydman, A., Shimshoni, E., Dalla Torre, E.G.: Tunneling probe of fluctuating superconductivity in disordered thin films. Phys. Rev. B 97, 100,503 (2018). https://doi.org/10.1103/PhysRevB.97.100503
Poboiko, I., Feigel’man, M.: Paraconductivity of pseudogapped superconductors. Phys. Rev. B 97, 014,506 (2018). https://doi.org/10.1103/PhysRevB.97.014506
Shtyk, A.V., Feigel’man, M.V.: Collective modes and ultrasonic attenuation in a pseudogapped superconductor. Phys. Rev. B 96, 064,523 (2017). https://doi.org/10.1103/PhysRevB.96.064523
Loh, Y.L., Randeria, M., Trivedi, N., Chang, C.C., Scalettar, R.: Superconductor-insulator transition and Fermi-Bose crossovers. Phys. Rev. X 6, 021,029 (2016). https://doi.org/10.1103/PhysRevX.6.021029
Sacépé, B., Chapelier, C., Baturina, T.I., Vinokur, V.M., Baklanov, M.R., Sanquer, M.: Pseudogap in a thin film of a conventional superconductor. Nat. Commun. 1(1), 140 (2010). https://doi.org/10.1038/ncomms1140
Sacépé, B, Dubouchet, T., Chapelier, C., Sanquer, M., Ovadia, M., Shahar, D., Feigel’man, M., Ioffe, L.: Localization of preformed cooper pairs in disordered superconductors. Nat. Phys. 7 (3), 239–244 (2011). https://doi.org/10.1038/nphys1892
Mondal, M., Kamlapure, A., Chand, M., Saraswat, G., Kumar, S., Jesudasan, J., Benfatto, L., Tripathi, V., Raychaudhuri, P.: Phase fluctuations in a strongly disordered s-wave NbN superconductor close to the metal-insulator transition. Phys. Rev. Lett. 106, 047,001 (2011). https://doi.org/10.1103/PhysRevLett.106.047001
Sherman, D., Kopnov, G., Shahar, D., Frydman, A.: Measurement of a superconducting energy gap in a homogeneously amorphous insulator. Phys. Rev. Lett. 108, 177,006 (2012). https://doi.org/10.1103/PhysRevLett.108.177006
Petrović, A.P., Ansermet, D., Chernyshov, D., Hoesch, M., Salloum, D., Gougeon, P., Potel, M., Boeri, L., Panagopoulos, C.: A disorder-enhanced quasi-one-dimensional superconductor. Nat. Commun. 7(1), 12,262 (2016). https://doi.org/10.1038/ncomms12262
Maśka, M.M., Śledź , Z., Czajka, K., Mierzejewski, M.: Inhomogeneity-induced enhancement of the pairing interaction in cuprate superconductors. Phys. Rev. Lett. 99, 147,006 (2007). https://doi.org/10.1103/PhysRevLett.99.147006
Bonča, J, Prelovšek, P, Sega, I.: Exact-diagonalization study of the effective model for holes in the planar antiferromagnet. Phys. Rev. B 39, 7074–7080 (1989). https://doi.org/10.1103/PhysRevB.39.7074
Dagotto, E.: Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994). https://doi.org/10.1103/RevModPhys.66.763
Chernyshev, A.L., Leung, P.W., Gooding, R.J.: Comprehensive numerical and analytical study of two holes doped into the two-dimensional t-J model. Phys. Rev. B 58, 13,594–13,613 (1998). https://doi.org/10.1103/PhysRevB.58.13594
Lau, B., Berciu, M., Sawatzky, G.A.: Computational approach to a doped antiferromagnet: Correlations between two spin polarons in the lightly doped CuO2 plane. Phys. Rev. B 84, 165102 (2011). https://doi.org/10.1103/PhysRevB.84.165102
Maśka, M.M., Mierzejewski, M., Kochetov, E.A., Vidmar, L., Bonča, J., Sushkov, O.P.: Effective approach to the nagaoka regime of the two-dimensional t-J model. Phys. Rev. B 85, 245,113 (2012). https://doi.org/10.1103/PhysRevB.85.245113
Wellein, G., Röder, H, Fehske, H.: Polarons and bipolarons in strongly interacting electron-phonon systems. Phys. Rev. B 53, 9666–9675 (1996). https://doi.org/10.1103/PhysRevB.53.9666
Bonca, J., Katrasnik, T., Trugman, S.A.: Mobile bipolaron. Phys. Rev. Lett. 84, 3153–3156 (2000). https://doi.org/10.1103/PhysRevLett.84.3153
Bonča, J., Trugman, S.A.: Bipolarons in the extended Holstein-Hubbard model. Phys. Rev. B 64, 094,507 (2001). https://doi.org/10.1103/PhysRevB.64.094507
Hague, J.P., Kornilovitch, P.E., Samson, J.H., Alexandrov, A.S.: Superlight small bipolarons in the presence of a strong coulomb repulsion. Phys. Rev. Lett. 98, 037,002 (2007). https://doi.org/10.1103/PhysRevLett.98.037002
Sakai, T., Poilblanc, D., Scalapino, D.J.: Hole pairing and phonon dynamics in generalized two-dimensional t-J Holstein models. Phys. Rev. B 55, 8445–8451 (1997). https://doi.org/10.1103/PhysRevB.55.8445
Vidmar, L., Bonča, J., Maekawa, S., Tohyama, T.: Bipolaron in the t-J model coupled to longitudinal and transverse quantum lattice vibrations. Phys. Rev. Lett. 103, 186,401 (2009). https://doi.org/10.1103/PhysRevLett.103.186401
Mierzejewski, M., Prelovšek, P., Bonča, J.: Einstein relation for a driven disordered quantum chain in the subdiffusive regime. Phys. Rev. Lett. 122, 206,601 (2019). https://doi.org/10.1103/PhysRevLett.122.206601
Prelovšek, P., Bonča, J., Mierzejewski, M.: Transient and persistent particle subdiffusion in a disordered chain coupled to bosons. Phys. Rev. B 98, 125,119 (2018). https://doi.org/10.1103/PhysRevB.98.125119
Bonča, J., Trugman, S.A., Mierzejewski, M.: Dynamics of the one-dimensional Anderson insulator coupled to various bosonic baths. Phys. Rev. B 97, 174,202 (2018). https://doi.org/10.1103/PhysRevB.97.174202
Bonča, J., Mierzejewski, M.: Delocalized carriers in the t-J model with strong charge disorder. Phys. Rev. B 95, 214,201 (2017). https://doi.org/10.1103/PhysRevB.95.214201
Shraiman, B.I., Siggia, E.D.: Two-particle excitations in antiferromagnetic insulators. Phys. Rev. Lett. 60, 740 (1988)
Shraiman, B.I., Siggia, E.D.: Mobile vacancies in a quantum heisenberg antiferromagnet. Phys. Rev. Lett. 61, 467 (1988)
Kogoj, J., Lenarčič, Z., Golež, D., Mierzejewski, M., Prelovšek, P., Bonča, J.: Multistage dynamics of the spin-lattice polaron formation. Phys. Rev. B 90, 125104 (2014). https://doi.org/10.1103/PhysRevB.90.125104
Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statistics. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2008)
de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction, 1st edn. Springer, Berlin (2010). https://www.bibsonomy.org/bibtex/227a035a03865f7dc4517a80c9a9852d5/marsianus
Leadbetter, M.R., Lindgren, G., Rootzen, H.: Extremes and Related Properties of Random Sequences and Processes. Springer Series in Statistics, Springer New York (2012). https://books.google.pl/books?id=-ofTBwAAQBAJ
Billingsley, P.: Probability and Measure. Wiley, New York, Toronto, London (1979)