Binder‐Free Electro‐Deposited MnO2 @3D Carbon Felt Network: A Positive Electrode for 2V Aqueous Supercapacitor

Energy Technology - Tập 11 Số 2 - 2023
V. Prabu1,2, K. Geetha3, R. Sekar1,2, Mani Ulaganathan4
1Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
2Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003 India
3Centre for Nanoscience and Technology, Periyar Maniammai Institute of Science and Technology, Thanjavur, 613403 India
4Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Coimbatore, 641112, India

Tóm tắt

Electrochemical supercapacitors have been considered the most promising energy storage system due to their attractive features, high power, energy density, and good cycle performance. This work investigates the capacitor performance of the tailor‐made electro‐deposited (ED) MnO2‐coated 3D‐carbon felt (CF) as a positive electrode. Manganese, a well‐known transition metal, has good electrochemical activity in various electrolyte conditions with broad operating potential and high specific capacity. The ED MnO2@CF delivers a maximum specific capacitance of and 231.5 Fg−1 at 10 mV s−1 in three electrode configurations. The asymmetric cell is developed using MnO2@CF as a positive electrode and the cell deliveres a maximum capacitance of 187.5 F g−1 at 0.2 A g−1 at a high‐voltage window of 2 V. The cycle life of the asymmetric capacitor is also tested up to 10 000 cycles, and the cell deliveres a round trip efficiency of 99%. To elucidate further the high‐voltage window (2 V) of the present work, an asymmetric cell configuration is fabricated using commercial MnO2 and the performance characteristics are also compared.

Từ khóa


Tài liệu tham khảo

10.1016/j.electacta.2022.141096

10.1021/nl802558y

Kelly B. T., 1981, Physics of Graphite

10.1038/s41598-020-75393-y

10.1103/PhysRevLett.100.016602

10.1039/D0SE01849J

10.1038/nature04969

10.1021/acsami.5b04672

10.1039/C6RA27415C

10.1002/chem.201803982

10.1016/j.matdes.2020.109111

10.1016/j.jallcom.2022.167282

10.1016/j.jmat.2016.01.001

10.1007/s10854-021-06505-1

10.1016/j.jpowsour.2016.09.159

10.1016/j.jsamd.2021.11.005

10.1039/C5TA03830H

10.1016/j.scib.2017.05.019

10.1149/1.1393216

10.1149/1.1453406

10.1039/C6TA03337G

10.1016/j.micromeso.2013.11.035

10.1186/s11671-020-03325-w

10.1016/j.jmat.2016.09.002

10.1016/j.carbon.2019.09.018

10.1016/j.jallcom.2021.161453

10.1016/0025-5408(92)90216-M

10.1016/j.jpowsour.2009.10.045

10.1007/s10853-017-1116-4

10.1021/jp8113094

10.1016/S0378-7753(98)00038-X

10.3390/ma14112990

10.1021/acssuschemeng.8b01075