Binary signed-digit integers and the Stern diatomic sequence

Laura Monroe1
1Ultrascale Systems Research Center, Los Alamos National Laboratory, Los Alamos, USA#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Avizienis, A.: Signed-digit number representations for fast parallel arithmetic. IRE Trans. Comput. EC-10(3), 389–400 (1961)

Bates B., Mansour T.: The q-Calkin-Wilf tree. J. Combin. Theory Ser. A 118, 1143–1151 (2011).

Booth A.D.: A signed binary multiplication technique. Quart. J. Mech. Appl. Math. 4(2), 236–240 (1951). https://doi.org/10.1093/qjmam/4.2.236.

Calkin N., Wilf H.S.: Recounting the rationals. Amer. Math. Monthly 107, 360–363 (2000).

Carlitz, L.: A problem in partitions related to the Stirling numbers. Bull. Amer. Math. Soc. 70(2), 275–278 (1964). http://projecteuclid.org/euclid.bams/1183525946

Cauchy, A.L.: Sur les moyens d’eviter les erreurs dans les calculs numerique (1840). In: Œuvres complétes: Series 1, Cambridge Library Collection - Mathematics, vol. 5, pp. 431–442. Cambridge University Press (2009). https://doi.org/10.1017/CBO9780511702518

Colson, J.: A short account of negativo-affirmative arithmetick. Philos. Trans. Roy. Soc. (1683-1775) 34, 161–173 (1726). http://www.jstor.org/stable/103469

Dijkstra, E.W.: Selected Writings on Computing: A Personal Perspective, pp. 215–232. Springer-Verlag New York, Inc., New York, NY, USA (1982)

Ebeid N., Hasan M.: On binary signed digit representations of integers. Des. Codes Cryptogr. 42, 43–65 (2007). https://doi.org/10.1007/s10623-006-9014-9.

Eğecioğlu, Ö., Koç, Ç.K.: Fast modular exponentiation. Proceedings of 1990 Bilkent International Conference on New Trends in Communication, Control, and Signal Processing 1, 188–194 (1990)

Finch, S.: Mathematical Constants, pp. 148–149. Encyclopedia of Mathematics and its Applications. Cambridge University Press (2003). http://books.google.com/books?id=DL5iVYNoEa0C

Grabner P., Heuberger C.: On the number of optimal base 2 representations of integers. Des. Codes Cryptogr. 40, 25–39 (2006). https://doi.org/10.1007/s10623-005-6158-y.

Koblitz, N.: CM-curves with good cryptographic properties. In: Advances in cryptology—CRYPTO ’91 (Santa Barbara, CA, 1991), Lecture Notes in Comput. Sci., vol. 576, pp. 279–287. Springer, Berlin (1992). https://doi.org/10.1007/3-540-46766-1_22. https://doi.org/10.1007/3-540-46766-1_22

Lehmer, D.H.: On Stern’s diatomic series. Amer. Math. Monthly 36(2), 59–67 (1929). http://www.jstor.org/stable/2299356

Lind D.A.: An extension of Stern’s diatomic series. Duke Math. J. 36(1), 55–60 (1969).https://doi.org/10.1215/S0012-7094-69-03608-4

Morain F., Olivos J.: Speeding up the computations on an elliptic curve using addition-subtraction chains. RAIRO Theor. Inform. Appl. 24, 531–544 (1990). https://doi.org/10.1051/ita/1990240605311.

Northshield, S.: Stern’s diatomic sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4,.... Amer. Math. Monthly 117(7), 581–598 (2010)

OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences: Sequence A002487. http://oeis.org/A002487 (2020). Accessed 2020-04-15

Reznick, B.: Some binary partition functions. In: Analytic Number Theory, Progress in Mathematics, vol. 85, pp. 451–477. Birkhauser Boston (1990). https://doi.org/10.1007/978-1-4612-3464-7_29.

Shallit, J.: A primer on balanced binary representations. http://cs.uwaterloo.ca/~shallit/Papers/bbr.pdf (1992)

Shannon, C.E.: A symmetrical notation for numbers. Amer. Math. Monthly 57(2), 90–93 (1950). http://www.jstor.org/stable/2304993

Stanley, R.P., Wilf, H.S.: Refining the Stern diatomic sequence. http://www-math.mit.edu/~rstan/papers/stern.pdf (2010)

Stern, M.: Ueber eine zahlentheoretische Funktion. J. Reine Angew. Math. 55, 193–220 (1858). http://eudml.org/doc/147729

Tůma, J., Vábek, J.: On the number of binary signed digit representations of a given weight. Commentationes Mathematicae Universitatis Carolinae 56(3), 287–306 (2015). https://doi.org/10.14712/1213-7243.2015.129