Binary optimization of metallic nano-tube-based absorption coefficient

Springer Science and Business Media LLC - Tập 14 - Trang 486-491 - 2015
Majid Akhlaghi1, Hosein Shahmirzaee2, Mohammad Hosain Enjavi3
1Young Researchers and Elite Club, Omidieh Branch, Islamic Azad University, Omidieh, Iran
2Air Ocean Research Center, University of Malek Ashtar, Shiraz, Iran
3Shiraz University of Technology, Shiraz, Iran

Tóm tắt

A new efficient binary optimization method being established on teaching-learning-based optimization (TLBO) algorithm was used to design an array of plasmonic nano-tubes to increase maximum absorption coefficient spectrum. Binary TLBO (BTLBO), a bunch of learners including a matrix with binary entries responsible for controlling nano-tubes in the array, shows the presence with symbol of (‘1’) and the absence with (‘0’). Simulation results indicate that non-periodic structure having more appropriate response in terms of the absorption coefficient strongly depends on the position of plasmonic nano-particles and non-periodic structures. This efficient approach is used in optical applications such as solar cell and plasmonic nano-antenna.

Tài liệu tham khảo

Huang, Y., Duan, X., Wei, Q., Lieber, C.M.: Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001) Law, M., Sirbuly, D.J., Johnson, J.C., Goldberger, J., Saykally, R.J., Yang, P.: Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004) Katz, E., Willner, I.: Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. 43(45), 6042–6108 (2004) Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S.: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997) Biteen, J.S., Pacifici, D., Lewis, N.S., Atwater, H.A.: Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters. Nano Lett. 9, 1768–1773 (2005) Catchpole, K.R., Polman, A.: Plasmonic solar cell. Opt. Express 16(26), 21793–21800 (2008) Boriskina, S.V., Gopinath, A., Negro, L.D.: Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures. Opt. Express 16(23), 18813–18826 (2008) Hormozi-Nezhad, M.R., Karami, P., Robatjazi, H.: A simple shape-controlled synthesis of gold nanoparticles using nonionic surfactants. Int. J. Furt. Chem. Sci. 3, 7726–7732 (2013) Kawamura, G.O., Nogami, M., Matsuda, A.: Shape-controlled metal nanoparticles and their assemblies with optical functionalities. J. Nanomater. 2013, 2 (2013) Le Ru, E.C., Pablo, G.: Etchegoin Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects, 1st edn. Elsevier, Amsterdam (2008) Choi, C.J., Wu, H.Y., George, S., Weyhenmeyer, J., Cunningham, B.T.: Biochemical sensortubing for point-of-care monitoring of intravenous drugs and metabolites. Lab Chip 12(3), 574–581 (2012) Choi, C.J., Xu, Z.D., Wu, H.Y., Liu, G.L., Cunningham, B.T.: Surface-enhanced Raman nanodomes. Nanotechnology 21(41), 415301 (2010) Wu, H.Y., Choi, C.J., Cunningham, B.T.: Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array. Small 8(18), 2878–2885 (2012) Block, I.D., Mathias, P.C., Ganesh, N., Jones, S.I., Dorvel, B.R., Chaudhery, V., Vodkin, L.O., Bashir, R., Cunningham, B.T.: A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces. Opt. Express 17(15), 13222–13235 (2009) Negro, D.L., Feng, N.: Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles. Opt. Express 22, 14396–14403 (2007) Kalousek, R., Dub, P., Břínek, L., ŠikolaD, T.: Response of plasmonic resonant nanorods: an analytical approach to optical antennas. Opt. Express 20(16), 17916–17927 (2012) Bruck, R., Muskens, O.L.: Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. Opt. Express 21(23), 27652–27661 (2013) Krasavin, V.A., Zayats, A.V.: Guiding light at the nanoscale: numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides. Opt. Lett. 36, 3127–3129 (2011) Dühring, B.M., Sigmund, O.: Optimization of extraordinary optical absorption in plasmonic and dielectric structures. J. Opt. Soc. Am. B 30, 1154–1160 (2013) Loke, L.Y., Mengüç, M.P., Nieminen, T.A.: Discrete-dipole approximation with surface interaction: computational toolbox for MATLAB. J. Quant. Spectrosc. Radiat. Transf. 112(11), 1711–1725 (2011) Becker, J., Trügler, A., Jakab, A.: The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmon. J. 5(2), 161–167 (2010) Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1998) Roa, R.V., Savsani, V.J., Vakharia, D.P.: Teacher-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011) Akhlaghi, M., Emami, F., Nozhat, N.: Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient. Mod. Opt. 61(13), 1092–1096 (2014) Catchpole, K.R., Polman, A.: Plasmonic solar cell. Opt. Express 16, 21793–21800 (2008) Zhang, J.Z.: Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J. Phys. Chem. Lett. 1.4, 686–695 (2010)