Bimodal magmatism in the Eastern Dharwar Craton, southern India: Implications for Neoarchean crustal evolution

Lithos - Tập 354 - Trang 105336 - 2020
Jing-Yi Wang1, M. Santosh1,2, M. Jayananda3, K.R. Aadhiseshan4
1School of Earth Sciences and Resources, China University of Geosciences, Beijing, Beijing 100083, PR China
2Department of Earth Sciences, University of Adelaide, Adelaide, SA, Australia
3Centre for Earth, Ocean and Atmospheric Sciences, University of Hyderabad, Hyderabad 500 046, India
4Department of Geology, University of Delhi, Delhi 110 007, India

Tài liệu tham khảo

Allen, 1985 Balakrishnan, 1990, Pb and Nd isotope constraints on the origin of high Mg and tholeiitic amphibolites, Kolar schist belt, South India, Contrib. Mineral. Petrol., 107, 279, 10.1007/BF00325099 Balakrishnan, 1999, U–Pb ages for zircon and titanite from the Ramagiri area, southern India: evidence for the accretionary origin of the Eastern Dharwar craton during the late Archean, J. Geol., 107, 69, 10.1086/314331 Barker, 1976, Generation of trondhjemite-tonalite liquids and Archean bimodal trondhjemite-basalt suites, Geology, 4, 596, 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2 Beard, 1986, Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis, Geology, 14, 848, 10.1130/0091-7613(1986)14<848:CMOACG>2.0.CO;2 Belousova, 2002, Igneous zircon: trace element composition as an indicator of source rock type, Contrib. Mineral. Petrol., 143, 602, 10.1007/s00410-002-0364-7 Bidyananda, 2016, U-Pb and Hf isotope records in detrital and magmatic zircon from eastern and western Dharwar craton, southern India: evidence for coeval Archean crustal evolution, Precambrian Res., 275, 496, 10.1016/j.precamres.2016.01.009 Blichert-Toft, 1997, The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system, Earth Planet. Sci. Lett., 148, 243, 10.1016/S0012-821X(97)00040-X Chadwick, 2000, The Dharwar craton, southern India, interpreted as the result of late Archaean oblique convergence, Precambrian Res., 99, 91, 10.1016/S0301-9268(99)00055-8 Condie, 2013, The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean, Gondw. Res., 23, 394, 10.1016/j.gr.2011.09.011 Dey, 2012, Geochemical and nd isotope constraints on petrogenesis of granitoids from NW part of the eastern Dharwar craton: possible implications for late Archaean crustal accretion, J. Asian Earth Sci., 45, 40, 10.1016/j.jseaes.2011.09.013 Didier, 1991, 625 Gireesh, 2012, Anatomy of 2.57-2.52 Ga granitoids plutons in the eastern Dharwar craton, southern India: Implications for magma chamber processes, Episodes, 35-3, 398, 10.18814/epiiugs/2012/v35i3/002 Griffin, 2002, Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes. Tonglu and Pingtan igneous complexes, Lithos, 61, 237, 10.1016/S0024-4937(02)00082-8 Guitreau, 2017, New constraints on the early formation of the western Dharwar craton (India) from igneous zircon u-pb and lu-hf isotopes, Precambrian Res., S0301926817302498 Hagen-Peter, 2018, Evaluating the relative roles of crustal growth versus reworking through continental arc magmatism: case study from the Ross orogen, Antarctica, Gondw. Res., 55, 153, 10.1016/j.gr.2017.11.006 Harish Kumar, 2003, Late Archean juvenile accretion process in the Eastern Dharwar Craton; Kuppam–Karimangala area, Mem. Geol. Soc. India, 50, 375 Heilimo, 2010, Discrimination and origin of the sanukitoid series: geochemical constraints from the Neoarchaean western Karelian Province (Finland), Lithos, 115, 27, 10.1016/j.lithos.2009.11.001 Hoskin, 2003, The composition of zircon and igneous and metamorphic petrogenesis, Rev. Mineral. Geochem., 53, 27, 10.2113/0530027 Huppert, 1988, The generation of granitic magmas by intrusion of basalt into continental crust, J. Petrol., 29, 599, 10.1093/petrology/29.3.599 Irvine, 1971, A guide to the chemical classification of the common volcanic rocks, Can. J. Earth Sci., 8, 523, 10.1139/e71-055 Jayananda, 2000, Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: Constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry, Precambrian Res., 99, 225, 10.1016/S0301-9268(99)00063-7 Jayananda, 2006, 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: tectonic, geochronologic and geochemical constraints, Precambrian Res., 150, 1, 10.1016/j.precamres.2006.05.004 Jayananda, 2009, Synplutonic mafic dykes from late Archaean granitoids in the Eastern Dharwar Craton southern India, J. Geol. Soc. India, 73, 117, 10.1007/s12594-009-0007-y Jayananda, 2013, Geochronological constraints on Meso-Neoarchean regional metamorphism and magmatism in the Dharwar craton, southern India, J. Asian Earth Sci., 78, 18, 10.1016/j.jseaes.2013.04.033 Jayananda, 2013, Neoarchean greenstone volcanism, Dharwar craton, Southern India: Constraints from SIMS zircon geochronology and Nd isotopes, Precambrian Res., 227, 55, 10.1016/j.precamres.2012.05.002 Jayananda, 2014, Coeval Felsic and Mafic Magmas in Neoarchean Calc-alkaline Magmatic Arcs, Dharwar Craton, Southern India: Field and Petrographic evidence from Mafic to Hybrid Magmatic Enclaves and Synplutonic Mafic Dykes, J. Geol. Soc. India, 84, 5, 10.1007/s12594-014-0106-2 Jayananda, 2015, Paleo- to Mesoarchean TTG accretion and continental growth, western Dharwar craton, southern India: SHRIMP U-Pb zircon geochronology, whole-rock geochemistry and Nd-Sr isotopes, Precambrian Res., 268, 295, 10.1016/j.precamres.2015.07.015 Jayananda, 2018, Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India, Earth-Sci. Rev., 181, 12, 10.1016/j.earscirev.2018.03.013 Jayananda, 2019, Geochronology and geochemistry of Meso- to Neoarchean magmatic epidote-bearing potassic granites, western Dharwar Craton (Bellur–Nagamangala–Pandavpura corridor), southern India: implications for the successive stages of crustal reworking and cratonization, Geol. Soc. Lond. Spec. Publ., 489 Jayananda, 2019, New insights into multi-stage crustal growth, Neoarchean orogenic plateau formation and cratonization in the Eastern Dharwar craton, Invit. Focus Rev. Gondwana Res. Khanna, 2016, Petrogenesis of ultramafics in the Neoarchean Veligallu greenstone terrane, eastern Dharwar craton, India: Constraints from bulk-rock geochemistry and Lu-Hf isotopes, Precambrian Res., 285, 186, 10.1016/j.precamres.2016.09.020 Komiya, 2007, A very hydrous mantle under the western Pacific region. Implications for formation of marginal basins and style of Archean tectonics, Gondw. Res., 11, 132, 10.1016/j.gr.2006.02.006 Korsch, 2011, Australian island arcs through time: Geodynamic implications for the Archean and Proterozoic, Gondw. Res., 19, 716, 10.1016/j.gr.2010.11.018 Krogstad, 1991, U–Pb ages of zircon and sphene for two gneiss terrains adjacent to the Kolar Schist Belt, South India: evidence for separate crustal evolution histories, J. Geol., 99, 801, 10.1086/629553 La Flèche, 1998, Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Quebéc, Canada, Chem. Geol., 148, 115, 10.1016/S0009-2541(98)00002-3 Laurent, 2014, The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga, Lithos, 205, 208, 10.1016/j.lithos.2014.06.012 Le Maitre, 1989 Li, 2018, Neoarchean microblock amalgamation in southern India: evidence from the Nallamalai suture zone, Precambrian Res., S030192681830127X Liu, 2010, Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths, J. Petrol., 51, 537, 10.1093/petrology/egp082 Manikyamba, 2012, Eastern Dharwar Craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes, Geosci. Front., 3, 225, 10.1016/j.gsf.2011.11.009 Manikyamba, 2017, Volcano-sedimentary and metallogenic records of the Dharwar greenstone terranes, India: Window to Archean plate tectonics, continent growth, and mineral endowment, Gondw. Res., 50, 38, 10.1016/j.gr.2017.06.005 Martin, 1986, Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas, Geology, 14, 753, 10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2 Masuda, 1973, Fine structures of mutually normalized REE patterns of chondrites, Geochim. Cosmochim. Acta, 37, 239, 10.1016/0016-7037(73)90131-2 Meert, 2011, Preliminary report on the paleomagnetism of 1.88ga dykes from the bastar and Dharwar cratons, peninsular India, Gondw. Res., 20, 335, 10.1016/j.gr.2011.03.005 Moyen, 2003, Late Archean granites: a typology based on the Dharwar Craton (India), Precambrian Res., 127, 103, 10.1016/S0301-9268(03)00183-9 Oliveira, 2011, The Rio Capim volcanic–plutonic–sedimentary belt, são Francisco craton, Brazil: geological, geochemical and isotopic evidence for oceanic arc accretion during Palaeoproterozoic continental collision, Gondw. Res., 19, 735, 10.1016/j.gr.2010.06.005 Pearce, 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and search for Archean oceanic crust, Lithos, 100, 14, 10.1016/j.lithos.2007.06.016 Perugini, 2012, The mixing of magmas in plutonic and volcanic environments: analogies and differences, Lithos, 153, 261, 10.1016/j.lithos.2012.02.002 Peucat, 1993, Age of younger tonalitic magmatism and granulite metamorphism in the amphibolite–granulite transition zone of southern India (Krishnagiri area): comparison with older peninsular gneisses of Gorur- Hassan area, J. Metam. Geol., 11, 879, 10.1111/j.1525-1314.1993.tb00197.x Peucat, 2013, The lower crust of Dharwar craton, South India: patchwork of Archean granulitic domains, Precambrian Res., 227, 4, 10.1016/j.precamres.2012.06.009 Prouteau, 2001, Evidence for mantle metasomatism by hydrous silicate melts derived from subducted oceanic crust, Nature, 410, 197, 10.1038/35065583 Radhakrishna, 1986, Precambrian continental crust of India and its evolution, J. Geol., 94, 145, 10.1086/629020 Rogers, 2003, Supercontinents in earth history, Gondw. Res., 6, 357, 10.1016/S1342-937X(05)70993-X Samuel, 2014, Neoarchean continental growth through arc magmatism in the Nilgiri Block, southern India, Precambrian Res., 245, 146, 10.1016/j.precamres.2014.02.002 Santosh, 2018, Anorthosites from an Archean continental arc in the Dharwar Craton, southern India: implications for terrane assembly and cratonization, Precambrian Res., 308, 126, 10.1016/j.precamres.2018.02.011 Santosh, 2009, Anatomy of a Cambrian suture in Gondwana: pacific-type orogeny in southern India?, Gondw. Res., 16, 321, 10.1016/j.gr.2008.12.012 Santosh, 2013, Suprasubduction zone ophiolite from Agali hill: petrology, zircon SHRIMP U–Pb geochronology, geochemistry and implications for Neoarchean plate tectonics in southern India, Precambrian Res., 231, 301, 10.1016/j.precamres.2013.04.003 Santosh, 2015, An exotic Mesoarchean microcontinent: the Coorg Block, southern India, Gondw. Res., 27, 165, 10.1016/j.gr.2013.10.005 Santosh, 2017, Neoproterozoic arc magmatism in the southern Madurai block, India: subduction, relamination, continental outbuilding, and the growth of Gondwana, Gondw. Res., 45, 1, 10.1016/j.gr.2016.12.009 Santosh, 2020, The Bastar craton, Central India: a window to Archean – paleoproterozoic crustal evolution, Gondw. Res., 79, 157, 10.1016/j.gr.2019.09.012 Scherer, 2001, Calibration of the Lutetium-Hafnium Clock, Science, 293, 683, 10.1126/science.1061372 Shand, 1943 Spencer, 2017, Visualising data distributions with kernel density estimation and reduced chi-squared statistic, Geosci. Front., 8, 1, 10.1016/j.gsf.2017.05.002 Straub, 2012, Volcanic arcs as archives of plate tectonic change, Gondw. Res., 21, 495, 10.1016/j.gr.2011.10.006 Sun, 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Lond. Spec. Publ., 42, 313, 10.1144/GSL.SP.1989.042.01.19 Swami Nath, 1981, Early Precambrian supracrustals of Southern Karnataka, Geol. Surv. India, 112, 79 Taylor, 1977, Geochemical application of spark source mass spectrography. III. Element sensitivity, precision and accuracy, Geochim. Cosmochim. Acta, 41, 1375, 10.1016/0016-7037(77)90080-1 Trail, 2011, The oxidation state of Hadean magmas and implications for early earth’s atmosphere, Nature, 480, 79, 10.1038/nature10655 Wang, 2019, Eoarchean to Mesoarchean crustal evolution in the Dharwar craton, India: evidence from detrital zircon U-Pb and Hf isotopes, Gondw. Res., 72, 1, 10.1016/j.gr.2019.02.006 Wang, 2009, Zircon U-Pb geochronological and geochemical constraints on the petrogenesis of the Taishan sanukitoids (Shandong): Implications for Neoarchean subduction in the Eastern block, North China Craton, Precambrian Res., 174, 273, 10.1016/j.precamres.2009.08.005 Wood, 1980, The application of a Th–Hf–Ta diagram to problems of tecto-magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province, Earth Planet. Sci. Lett., 50, 11, 10.1016/0012-821X(80)90116-8