Bimodal magmatism in the Eastern Dharwar Craton, southern India: Implications for Neoarchean crustal evolution
Tài liệu tham khảo
Allen, 1985
Balakrishnan, 1990, Pb and Nd isotope constraints on the origin of high Mg and tholeiitic amphibolites, Kolar schist belt, South India, Contrib. Mineral. Petrol., 107, 279, 10.1007/BF00325099
Balakrishnan, 1999, U–Pb ages for zircon and titanite from the Ramagiri area, southern India: evidence for the accretionary origin of the Eastern Dharwar craton during the late Archean, J. Geol., 107, 69, 10.1086/314331
Barker, 1976, Generation of trondhjemite-tonalite liquids and Archean bimodal trondhjemite-basalt suites, Geology, 4, 596, 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2
Beard, 1986, Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis, Geology, 14, 848, 10.1130/0091-7613(1986)14<848:CMOACG>2.0.CO;2
Belousova, 2002, Igneous zircon: trace element composition as an indicator of source rock type, Contrib. Mineral. Petrol., 143, 602, 10.1007/s00410-002-0364-7
Bidyananda, 2016, U-Pb and Hf isotope records in detrital and magmatic zircon from eastern and western Dharwar craton, southern India: evidence for coeval Archean crustal evolution, Precambrian Res., 275, 496, 10.1016/j.precamres.2016.01.009
Blichert-Toft, 1997, The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system, Earth Planet. Sci. Lett., 148, 243, 10.1016/S0012-821X(97)00040-X
Chadwick, 2000, The Dharwar craton, southern India, interpreted as the result of late Archaean oblique convergence, Precambrian Res., 99, 91, 10.1016/S0301-9268(99)00055-8
Condie, 2013, The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean, Gondw. Res., 23, 394, 10.1016/j.gr.2011.09.011
Dey, 2012, Geochemical and nd isotope constraints on petrogenesis of granitoids from NW part of the eastern Dharwar craton: possible implications for late Archaean crustal accretion, J. Asian Earth Sci., 45, 40, 10.1016/j.jseaes.2011.09.013
Didier, 1991, 625
Gireesh, 2012, Anatomy of 2.57-2.52 Ga granitoids plutons in the eastern Dharwar craton, southern India: Implications for magma chamber processes, Episodes, 35-3, 398, 10.18814/epiiugs/2012/v35i3/002
Griffin, 2002, Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes. Tonglu and Pingtan igneous complexes, Lithos, 61, 237, 10.1016/S0024-4937(02)00082-8
Guitreau, 2017, New constraints on the early formation of the western Dharwar craton (India) from igneous zircon u-pb and lu-hf isotopes, Precambrian Res., S0301926817302498
Hagen-Peter, 2018, Evaluating the relative roles of crustal growth versus reworking through continental arc magmatism: case study from the Ross orogen, Antarctica, Gondw. Res., 55, 153, 10.1016/j.gr.2017.11.006
Harish Kumar, 2003, Late Archean juvenile accretion process in the Eastern Dharwar Craton; Kuppam–Karimangala area, Mem. Geol. Soc. India, 50, 375
Heilimo, 2010, Discrimination and origin of the sanukitoid series: geochemical constraints from the Neoarchaean western Karelian Province (Finland), Lithos, 115, 27, 10.1016/j.lithos.2009.11.001
Hoskin, 2003, The composition of zircon and igneous and metamorphic petrogenesis, Rev. Mineral. Geochem., 53, 27, 10.2113/0530027
Huppert, 1988, The generation of granitic magmas by intrusion of basalt into continental crust, J. Petrol., 29, 599, 10.1093/petrology/29.3.599
Irvine, 1971, A guide to the chemical classification of the common volcanic rocks, Can. J. Earth Sci., 8, 523, 10.1139/e71-055
Jayananda, 2000, Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: Constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry, Precambrian Res., 99, 225, 10.1016/S0301-9268(99)00063-7
Jayananda, 2006, 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: tectonic, geochronologic and geochemical constraints, Precambrian Res., 150, 1, 10.1016/j.precamres.2006.05.004
Jayananda, 2009, Synplutonic mafic dykes from late Archaean granitoids in the Eastern Dharwar Craton southern India, J. Geol. Soc. India, 73, 117, 10.1007/s12594-009-0007-y
Jayananda, 2013, Geochronological constraints on Meso-Neoarchean regional metamorphism and magmatism in the Dharwar craton, southern India, J. Asian Earth Sci., 78, 18, 10.1016/j.jseaes.2013.04.033
Jayananda, 2013, Neoarchean greenstone volcanism, Dharwar craton, Southern India: Constraints from SIMS zircon geochronology and Nd isotopes, Precambrian Res., 227, 55, 10.1016/j.precamres.2012.05.002
Jayananda, 2014, Coeval Felsic and Mafic Magmas in Neoarchean Calc-alkaline Magmatic Arcs, Dharwar Craton, Southern India: Field and Petrographic evidence from Mafic to Hybrid Magmatic Enclaves and Synplutonic Mafic Dykes, J. Geol. Soc. India, 84, 5, 10.1007/s12594-014-0106-2
Jayananda, 2015, Paleo- to Mesoarchean TTG accretion and continental growth, western Dharwar craton, southern India: SHRIMP U-Pb zircon geochronology, whole-rock geochemistry and Nd-Sr isotopes, Precambrian Res., 268, 295, 10.1016/j.precamres.2015.07.015
Jayananda, 2018, Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India, Earth-Sci. Rev., 181, 12, 10.1016/j.earscirev.2018.03.013
Jayananda, 2019, Geochronology and geochemistry of Meso- to Neoarchean magmatic epidote-bearing potassic granites, western Dharwar Craton (Bellur–Nagamangala–Pandavpura corridor), southern India: implications for the successive stages of crustal reworking and cratonization, Geol. Soc. Lond. Spec. Publ., 489
Jayananda, 2019, New insights into multi-stage crustal growth, Neoarchean orogenic plateau formation and cratonization in the Eastern Dharwar craton, Invit. Focus Rev. Gondwana Res.
Khanna, 2016, Petrogenesis of ultramafics in the Neoarchean Veligallu greenstone terrane, eastern Dharwar craton, India: Constraints from bulk-rock geochemistry and Lu-Hf isotopes, Precambrian Res., 285, 186, 10.1016/j.precamres.2016.09.020
Komiya, 2007, A very hydrous mantle under the western Pacific region. Implications for formation of marginal basins and style of Archean tectonics, Gondw. Res., 11, 132, 10.1016/j.gr.2006.02.006
Korsch, 2011, Australian island arcs through time: Geodynamic implications for the Archean and Proterozoic, Gondw. Res., 19, 716, 10.1016/j.gr.2010.11.018
Krogstad, 1991, U–Pb ages of zircon and sphene for two gneiss terrains adjacent to the Kolar Schist Belt, South India: evidence for separate crustal evolution histories, J. Geol., 99, 801, 10.1086/629553
La Flèche, 1998, Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Quebéc, Canada, Chem. Geol., 148, 115, 10.1016/S0009-2541(98)00002-3
Laurent, 2014, The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga, Lithos, 205, 208, 10.1016/j.lithos.2014.06.012
Le Maitre, 1989
Li, 2018, Neoarchean microblock amalgamation in southern India: evidence from the Nallamalai suture zone, Precambrian Res., S030192681830127X
Liu, 2010, Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths, J. Petrol., 51, 537, 10.1093/petrology/egp082
Manikyamba, 2012, Eastern Dharwar Craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes, Geosci. Front., 3, 225, 10.1016/j.gsf.2011.11.009
Manikyamba, 2017, Volcano-sedimentary and metallogenic records of the Dharwar greenstone terranes, India: Window to Archean plate tectonics, continent growth, and mineral endowment, Gondw. Res., 50, 38, 10.1016/j.gr.2017.06.005
Martin, 1986, Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas, Geology, 14, 753, 10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2
Masuda, 1973, Fine structures of mutually normalized REE patterns of chondrites, Geochim. Cosmochim. Acta, 37, 239, 10.1016/0016-7037(73)90131-2
Meert, 2011, Preliminary report on the paleomagnetism of 1.88ga dykes from the bastar and Dharwar cratons, peninsular India, Gondw. Res., 20, 335, 10.1016/j.gr.2011.03.005
Moyen, 2003, Late Archean granites: a typology based on the Dharwar Craton (India), Precambrian Res., 127, 103, 10.1016/S0301-9268(03)00183-9
Oliveira, 2011, The Rio Capim volcanic–plutonic–sedimentary belt, são Francisco craton, Brazil: geological, geochemical and isotopic evidence for oceanic arc accretion during Palaeoproterozoic continental collision, Gondw. Res., 19, 735, 10.1016/j.gr.2010.06.005
Pearce, 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and search for Archean oceanic crust, Lithos, 100, 14, 10.1016/j.lithos.2007.06.016
Perugini, 2012, The mixing of magmas in plutonic and volcanic environments: analogies and differences, Lithos, 153, 261, 10.1016/j.lithos.2012.02.002
Peucat, 1993, Age of younger tonalitic magmatism and granulite metamorphism in the amphibolite–granulite transition zone of southern India (Krishnagiri area): comparison with older peninsular gneisses of Gorur- Hassan area, J. Metam. Geol., 11, 879, 10.1111/j.1525-1314.1993.tb00197.x
Peucat, 2013, The lower crust of Dharwar craton, South India: patchwork of Archean granulitic domains, Precambrian Res., 227, 4, 10.1016/j.precamres.2012.06.009
Prouteau, 2001, Evidence for mantle metasomatism by hydrous silicate melts derived from subducted oceanic crust, Nature, 410, 197, 10.1038/35065583
Radhakrishna, 1986, Precambrian continental crust of India and its evolution, J. Geol., 94, 145, 10.1086/629020
Rogers, 2003, Supercontinents in earth history, Gondw. Res., 6, 357, 10.1016/S1342-937X(05)70993-X
Samuel, 2014, Neoarchean continental growth through arc magmatism in the Nilgiri Block, southern India, Precambrian Res., 245, 146, 10.1016/j.precamres.2014.02.002
Santosh, 2018, Anorthosites from an Archean continental arc in the Dharwar Craton, southern India: implications for terrane assembly and cratonization, Precambrian Res., 308, 126, 10.1016/j.precamres.2018.02.011
Santosh, 2009, Anatomy of a Cambrian suture in Gondwana: pacific-type orogeny in southern India?, Gondw. Res., 16, 321, 10.1016/j.gr.2008.12.012
Santosh, 2013, Suprasubduction zone ophiolite from Agali hill: petrology, zircon SHRIMP U–Pb geochronology, geochemistry and implications for Neoarchean plate tectonics in southern India, Precambrian Res., 231, 301, 10.1016/j.precamres.2013.04.003
Santosh, 2015, An exotic Mesoarchean microcontinent: the Coorg Block, southern India, Gondw. Res., 27, 165, 10.1016/j.gr.2013.10.005
Santosh, 2017, Neoproterozoic arc magmatism in the southern Madurai block, India: subduction, relamination, continental outbuilding, and the growth of Gondwana, Gondw. Res., 45, 1, 10.1016/j.gr.2016.12.009
Santosh, 2020, The Bastar craton, Central India: a window to Archean – paleoproterozoic crustal evolution, Gondw. Res., 79, 157, 10.1016/j.gr.2019.09.012
Scherer, 2001, Calibration of the Lutetium-Hafnium Clock, Science, 293, 683, 10.1126/science.1061372
Shand, 1943
Spencer, 2017, Visualising data distributions with kernel density estimation and reduced chi-squared statistic, Geosci. Front., 8, 1, 10.1016/j.gsf.2017.05.002
Straub, 2012, Volcanic arcs as archives of plate tectonic change, Gondw. Res., 21, 495, 10.1016/j.gr.2011.10.006
Sun, 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Lond. Spec. Publ., 42, 313, 10.1144/GSL.SP.1989.042.01.19
Swami Nath, 1981, Early Precambrian supracrustals of Southern Karnataka, Geol. Surv. India, 112, 79
Taylor, 1977, Geochemical application of spark source mass spectrography. III. Element sensitivity, precision and accuracy, Geochim. Cosmochim. Acta, 41, 1375, 10.1016/0016-7037(77)90080-1
Trail, 2011, The oxidation state of Hadean magmas and implications for early earth’s atmosphere, Nature, 480, 79, 10.1038/nature10655
Wang, 2019, Eoarchean to Mesoarchean crustal evolution in the Dharwar craton, India: evidence from detrital zircon U-Pb and Hf isotopes, Gondw. Res., 72, 1, 10.1016/j.gr.2019.02.006
Wang, 2009, Zircon U-Pb geochronological and geochemical constraints on the petrogenesis of the Taishan sanukitoids (Shandong): Implications for Neoarchean subduction in the Eastern block, North China Craton, Precambrian Res., 174, 273, 10.1016/j.precamres.2009.08.005
Wood, 1980, The application of a Th–Hf–Ta diagram to problems of tecto-magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province, Earth Planet. Sci. Lett., 50, 11, 10.1016/0012-821X(80)90116-8