Billiards and Integrability in Geometry and Physics. New Scope and New Potential

А. Т. Фоменко1, V. V. Vedyushkina1
1Faculty of Mechanics and Mathematics, Moscow State University, Leninskie Gory, Moscow, 119991, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

V. V. Fokicheva, “Description of Singularities for System “Billiard in an Ellipse,” Vestnik Mosk. Univ., Matem. Mekhan., No. 5, 31 (2012) [Moscow Univ. Math. Bulletin 67 (5–6), 217 (2012)].

V. V. Fokicheva, “Classification of Billiard Motions in Domains Bounded by Confocal Parabolas,” Matem. Sbornik 205(8), 139 (2014) [Sbornik: Math. 205 (8), 1201 (2014).]

V. V. Fokicheva, “Description of Singularities for Billiard Systems Bounded by Confocal Ellipses or Hyperbolas,” Vestnik Mosk. Univ., Matem. Mekhan., No. 4, 18 (2014) [Moscow Univ. Math. Bulletin 69 (4), 148 (2014)].

V. V. Fokicheva, “A Topological Classification of Billiards in Locally Planar Domains Bounded by Arcs of Confocal Quadrics,” Matem. Sbornik 206(10), 127 (2015) [Sbornik: Math. 206 (10), 1463 (2015)].

V. V. Vedyushkina, “The Liouville Foliation of Non-convex Topological Billiards,” Doklady Russ. Akad. Nauk 478(1), 7 (2018) [Doklady Math. 97 (1), 105 (2018)].

V. V. Vedyushkina, “Fomenko—Zieschang Invariants of Topological Billiards Bounded by Confocal Parabolas,” Vestnik Mosk. Univ., Matem. Mekhan., No. 4, 22 (2018) [Moscow Univ. Math. Bulletin 73 (4), 150 (2018)].

V. V. Vedyushkina, “Fomenko—Zieschang Invariants of Non-convex Topological Billiards,” Matem. Sbornik 210(3), 17 (2019)

V. V. Vedyushkina and I. S. Kharcheva, “Billiard Books Model all Three-Dimensional Bifurcations of Integrable Hamiltonian Systems,” Matem. Sbornik 209(12), 17 (2018) [Sbornik: Math. 209 (12), 1690 (2018)].

E. E. Karginova, “Billiards Bounded by Two Confocal Quadrics in Minkowski Plane,” Matem. Sbornik 210 (2019), in press.

E. E. Karginova, “Liouville Foliations of Topological Billiards in Minkowski Plane,” Fundamental and Applied Math. (2019), in press

V. A. Moskvin, “Topology of Liouville Foliations for Integrable Billiards in Non-Convex Domains,” Vestnik Mosk. Univ., Matem. Mekhan. No. 3, 21 (2018) [Moscow Univ. Math. Bulletin 73 (3), 103 (2018)].

I. F. Kobtsev, “The Geodesic Flow on a Two-Dimensional Ellipsoid in the Field of an Elastic Force. Topological Classification of Solutions,” Vestnik Mosk. Univ., Matem. Mekhan., No. 2, 27 (2018) [Moscow Univ. Math. Bulletin 73 (2), 64 (2018)].

S. E. Pustovoitov, “Topological Analysis of a Billiard in Elliptic Ring in a Potential Field,” Fundamental and Applied Math. (2019), in press

V. A. Trifonova, “Partially Symmetric Height Atoms,” Vestnik Mosk. Univ., Matem., Mekhan., No. 2, 33 (2018) [Moscow Univ. Math. Bulletin 73 (2), 71 (2018)].

V. A. Kibkalo, “The Topology of the Analog of Kovalevskaya Integrability Case on the Lie Algebra so(4) under Zero Area Integral,” Vestnik Mosk. Univ., Matem. Mekhan. No. 3, 46 (2016) [Moscow Univ. Math. Bull., 71 (3), 119 (2016)].

V. A. Kibkalo, “Topological Classification of Liouville Foliations for the Kovalevskaya Integrable Case on the Lie Algebra so(4),” Matem. Sbornik 210(5), 3 (2019)

K. I. Solodskikh, “Graph—Manifolds and Integrable Hamiltonian Systems,” Matem. Sbornik 209(5), 5, 145 (2018) [Sbornik: Math. 209 (5), 739 (2018)].

V. Dragovic and M. Radnovic, “Bifurcations of Liouville Tori in Elliptical Billiards,” Regul. Chaotic Dyn. 14(4–5), 479 (2009).

V. Dragovic and M. Radnovic, Integrable Billiards, Quadrics, and Multidimensional Poncelet’s Porisms, (NITs Regul. Khaot. Dynam., Moscow, Izhevsk, 2010; Birkhöser, 2011).

G. D. Birkhoff, Dynamical Systems (Izd. dorn “Udmurd. Univers.,” 1999; AMS Coll. Publ., 1927).

V. V. Kozlov and D. V. Treshchev. Billiards. A Genetic Introduction to the Dynamics of Systems with Impacts (Moscow State Univ., Moscow, 1991; AMS, Trans. of Math. Monographs, vol. 89, Providence, RI, 1991).

A. T. Fomenko, “Morse Theory of Integrable Hamiltonian Systems,” Doklady Akad. Nauk SSSR 287(5), 1017 (1986) [Soviet Math. Doklady 33 (2), 506 (1986)].

A. T. Fomenko, “The Symplectic Topology of Completely Integrable Hamiltonian Systems,” Uspekhi Matem. Nauk 44(1), 145 (1989) [Russian Math. Surveys 44 (1), 181 (1989)].

A. T. Fomenko and H. Zieschang, “On Typical Topological Properties of Integrable Hamiltonian Systems,” Izvestiya Akad. Nauk SSSR, Matem. 52(2), 378 (1988) [Math. USSR Izvestiya 32 (2), 385 (1989)].

A. T. Fomenko and H. Zieschang, “A Topological Invariant and a Criterion for the Equivalence of Integrable Hamiltonian Systems with Two Degrees of Freedom,” Izvestiya Akad. Nauk SSSR, Matem. 54(3), 546 (1990) [Math. USSR Izvestiya 36 (3), 596 (1991)].

A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification, Vol. 1, 2 (NITs Regul. Khaot. Dynam., Izhevsk, 1999; Chapman and Hall/CRC, Boca Raton, L., N.Y., Washington, D.C. USA, 2004).

V. V. Vedyushkina and A. T. Fomenko, “Integrable Topological Billiards and Equivalent Dynamical Systems,” Izvestiya Akad. Nauk SSSR, Matem. 81(4), 20 (2017) [Izvestiya: Math. 81 (4), 688 (2017)].

V. V. Vedyushkina and A. T. Fomenko, “Integrable Billiards Model Important Integrable Cases of Rigid Body Dynamics,” Doklady Russ. Akad. Nauk 465(2), 150 (2015) [Doklady Math. 92 (3), 682 (2015)].

V. V. Vedyushkina, A. T. Fomenko, and I. S. Kharcheva, “Modelling Nondegenerate Bifurcations of Closures of Solutions for Integrable Systems with Two Degrees of Freedom by Integrable Topological Billiards,” Doklady Russ. Akad. Nauk 479(6), 607 (2018) [Doklady Math. 97 (2), 174 (2018)].

I. M. Nikonov and N. V. Volchanetskii, “Maximally Symmetric Height Atoms,” Vestnik Mosk. Univ., Matem. Mekhan., No. 2, 3 (2013) [Moscow Univ. Math. Bulletin 68 (2), 83 (2013)].

I. M. Nikonov, “Height Atoms whose Symmetry Groups Act Transitively on their Vertex Sets,” Vestnik Mosk. Univ., Matem. Mekhan., No 6, 1 (2016) [Moscow Univ. Math. Bulletin 71 (6), 233 (2016)].

E. A. Kudryavtseva, I. M. Nikonov, and A. T. Fomenko, “Maximally Symmetric Cell Decompositions of Surfaces and their Coverings,” Matem. Sbornik 199(9), 3 (2008) [Sbornik: Math. 199 (9), 1263 (2008)].

E. A. Kudryavtseva, I. M. Nikonov, and A. T. Fomenko, “Symmetric and Irreducible Abstract Polyhedra,” in: Modern Problems in Math, and Mech., ed. by A. T. Fomenko (Moscow State Univ., Moscow, 2009), pp. 58–97.

A. T. Fomenko and S. V. Matveev, Algorithmic and Computer Methods in Three-Manifolds (Moscow State Univ., Moscow, 1991; Kluwer Acad. Publ., Netherlands, 1997).

S. V. Matveev, Algorithmic Topology and Classification of 3-Manifolds (MTsNMO, Moscow, 2007; Springer-Verlag, Berlin, Heidelberg, 2007).

E. A. Kudryavtseva and A. T. Fomenko, “Symmetries Groups of Nice Morse Functions on Surfaces,” Doklady Russ. Akad. Nauk 446(6), 615 (2012) [Doklady Math. 86 (2), 691 (2012)].

V. Dragovic and M. Radnovic, “Topological Invariants for Elliptical Billiards and Geodesics on Ellipsoids in the Minkowski Space,” Fundament. Prikl. Matem. 20(2), 51 (2015) [J. Math. Sci. 223 (6), 686 (2017)].

A. Plakhov, S. Tabachnikov, and D. Treshchev, “Billiard Transformations of Parallel Flows: A Periscope Theorem,” J. Geom. and Phys. 115(5), 157 (2017).

A. Glutsyuk, “On Quadrilateral Orbits in Complex Algebraic Planar Billiards,” Mosc. Math. J. 14(2), 239 (2014).

A. T. Fomenko, “A Bordism Theory for Integrable Nondegenerate Hamiltonian Systems with Two Degrees of Freedom. A New Topological Invariant of Higher-Dimensional Integrable Systems,” Izvestiya Akad. Nauk SSSR, Matem. 55(4), 747 (1991) [Math. USSR Izvestiya 39 (1), 731 (1992)].

A. T. Fomenko, “The Theory of Invariants of Multidimensional Integrable Hamiltonian Systems (with Arbitrary Many Degrees of Freedom). Molecular Table of all Integrable Systems with Two Degrees of Freedom” in: Topological Classification of Integrable Systems, ed. by A. Fomenko (Amer. Math. Soc, Adv. in Soviet Math. Series, vol. 6, Providence, RI, 1991), pp. 1–36.