Bilirubin Attenuates Bufadienolide-Induced Ventricular Arrhythmias and Cardiac Dysfunction in Guinea-Pigs by Reducing Elevated Intracellular Na+ Levels

Hongyue Ma1, Junfeng Zhang2, Jiejun Jiang1, Jing Zhou1, Hao Xu1, Zhenlin Zhan2, Qinan Wu1, Jin‐Ao Duan1
1Jiangsu Key Laboratory for TCM Formulae Research, College of Pharmacy, Nanjing University of Chinese Medicine, NO. 138 Xianlin Road, Nanjing, 210046, China
2College of Basic Medicine, Nanjing University of Chinese Medicine, NO. 138 Xianlin Road, Nanjing, 210046, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Meng, Z., Yang, P., Shen, Y., Bei, W., Zhang, Y., Ge, Y., et al. (2009). Pilot study of huachansu in patients with hepatocellular carcinoma, nonsmall-cell lung cancer, or pancreatic cancer. Cancer, 115, 5309–5318.

Jiang, J. J., You, F. Q., Ma, H. Y., Zhong, J., Zhang, J. F., Zhan, Z., et al. (2011). Cell continuous extraction-HPLC determination biological affinity of 8 bufadienolides on MGC-803 cells and their correlation with anti-tumor activities. Zhongguo Zhong Yao Za Zhi, 36, 205–208.

Qi, F., Li, A., Inagaki, Y., Kokudo, N., Tamura, S., Nakata, M., et al. (2011). Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor. International Immunopharmacology, 11, 342–349.

Mijatovic, T., Van Quaquebeke, E., Delest, B., Debeir, O., Darro, F., & Kiss, R. (2007). Cardiotonic steroids on the road to anti-cancer therapy. Biochimica et Biophysica Acta, 1776, 32–57.

Gowda, R. M., Cohen, R. A., & Khan, I. A. (2003). Toad venom poisoning: resemblance to digoxin toxicity and therapeutic implications. Heart, 89, e14.

Ojiri, Y., Noguchi, K., & Sakanashi, M. (1991). Effects of a senso (toad venom) containing drug on systemic hemodynamics, cardiac function and myocardial oxygen consumption in anesthetized dogs. American Journal of Chinese Medicine, 19, 17–31.

Jiang, J. J., Zhong, J., Ma, H. Y., Lv, G. H., Yu, B., Duan, J. A., et al. (2011). Toxic effect of Chansu on cardiac electrophysiology in guinea-pigs. Chinese Journal Pharmacology Toxicology, 25, 307–309.

Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N., & Ames, B. N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science, 235, 1043–1046.

Paine, A., Eiz-Vesper, B., Blasczyk, R., & Immenschuh, S. (2010). Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochemical Pharmacology, 80, 1895–1903.

Nakagami, T., Toyomura, K., Kinoshita, T., & Morisawa, S. (1993). A beneficial role of bile pigments as an endogenous tissue protector: anti-complement effects of biliverdin and conjugated bilirubin. Biochimica et Biophysica Acta, 1158, 189–193.

Wu, M. L., Ho, Y. C., & Yet, S. F. (in press). A central role of heme oxygenase-1 in cardiovascular protection. Antioxidation and Redox Signaling.

Kalyoncu, N. I., & Ozyavuz, R. (1999). Ketanserin inhibits digoxin-induced arrhythmias in the anaesthetized guinea-pig. Fundamental and Clinical Pharmacology, 13, 646–649.

Fryer, R. M., Hsu, A. K., Nagase, H., & Gross, G. J. (2000). Opioid-induced cardioprotection against myocardial infarction and arrhythmias: Mitochondrial versus sarcolemmal ATP-Sensitive potassium channels. Journal of Pharmacology and Experimental Therapeutics, 294, 451–457.

Mitcheson, J. S., Hancox, J. C., & Levi, A. J. (1998). Cultured adult cardiac myocytes: future applications, culture methods, morphological and electrophysiological properties. Cardiovascular Research, 39, 280–300.

Flier, J., Edwards, M. W., Daly, J. W., & Myers, C. W. (1980). Widespread occurrence in frogs and toads of skin compounds interacting with the ouabain site of Na+, K+-ATPase. Science, 208, 503–505.

Demiryürek, A. T., & Demiryürek, S. (2005). Cardiotoxicity of digitalis glycosides: Roles of autonomic pathways, autacoids and ion channels. Autonomous Autacoidal Pharmacology, 25, 35–52.

Ma, G., Brady, W. J., Pollack, M., & Chan, T. C. (2001). Electrocardiographic manifestations: Digitalis toxicity. Journal of Emergency Medicine, 20, 145–152.

Bers, D. M., Barry, W. H., & Despa, S. (2003). Intracellular Na+ regulation in cardiac myocytes. Cardiovascular Research, 57, 897–912.

Levi, A. J., Dalton, G. R., Hancox, J. C., Mitcheson, J. S., Issberner, J., Bates, J. A., et al. (1997). Role of intracellular sodium overload in the genesis of cardiac arrhythmias. Journal of Cardiovascular Electrophysiology, 8, 700–721.

Corchs, J. L., Corchs, M. J., & Serrani, R. E. (1994). Unconjugated bilirubin effect on 3H-ouabain binding to human fetal red cells. Revista Espanola de Fisiologia, 50, 5–9.

Kashiwamata, S., Goto, S., Semba, R. K., & Suzuki, F. N. (1979). Inhibition by bilirubin of (Na+-K+)-activated adenosine triphosphatase and K+-activated p-nitrophenylphosphatase activities of NaI-treated microsomes from young rat cerebrum. Journal of Biological Chemistry, 254, 4577–4584.

Amato, M. (1995). Mechanisms of bilirubin toxicity. European Journal of Pediatrics, 154, S54–S59.

Lees, G. J., Lehmann, A., Sandberg, M., & Hamberger, A. (1990). The neurotoxicity of ouabain, a sodium-potassium ATPase inhibitor, in the rat hippocampus. Neuroscience Letters, 120, 159–162.

Levitt, B., Cagin, N. A., Somberg, J. C., & Kleid, J. J. (1976). Neural basis for the genesis and control of digitalis arrhythmias. Cardiology, 61, 50–60.