Bilinear Bäcklund transformation, soliton and periodic wave solutions for a $$\varvec{(3 + 1)}$$ ( 3 + 1 ) -dimensional variable-coefficient generalized shallow water wave equation

Springer Science and Business Media LLC - Tập 87 Số 4 - Trang 2529-2540 - 2017
Qian-Min Huang1, Yi–Tian Gao1, Shu-Liang Jia1, Ya-Le Wang1, Gao-Fu Deng1
1Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hirota, R.: The Direct Method in Soliton Theory. Springer, Berlin (1980)

Chai, J., Tian, B., Xie, X.Y.: Conservation laws, bilinear Bäcklund transformations and solitons for a nonautonomous nonlinear Schrödinger equation with external potentials. Commun. Nonlinear Sci. Numer. Simul. 39, 472–480 (2016)

Lan, Z.Z., Gao, Y.T., Yang, J.W.: Bäcklund transformation and Lax pair for a (2 + 1)-dimensional Broer-Kaup-Kupershmidt system in the shallow water of uniform depth. Commun. Nonlinear Sci. Numer. Simul. 44, 360–372 (2017)

Li, H.M., Tian, B., Xie, X.Y.: Soliton and rogue-wave solutions for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Commun. Nonlinear Dyn. 86, 369–380 (2016)

Wang, L., Zhang, J.H., Wang, Z.Q.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 6448–56 (2012)

Wang, L., Zhu, Y.J., Qi, F.H.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Chaos 25, 142 (2015)

Guo, R., Zhao, H.H., Wang, Y.: A higher-order coupled nonlinear Schrödinger system: solitons, breathers, and rogue wave solutions. Nonlinear Dyn. 83, 2475–2484 (2016)

Zhao, H.H., Zhao, X.J., Hao, H.Q.: Breather-to-soliton conversions and nonlinear wave interactions in a coupled Hirota system. Appl. Math. Lett. 61, 8–12 (2016)

Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2426C2435 (2013)

Hirota, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations And Inverse Scattering Transform. Cambridge University Press, London (1990)

El-Sabbagh, M.F., Ahmad, A.T.: Nonclassical symmetries for nonlinear partial differential equations via compatibility. Commun. Theor. Phys. 56, 611–616 (2011)

Bai, C.J., Zhao, H., Xu, H.Y.: New traveling wave solutions for a class of nonlinear evolution equations. Int. J. Mod. Phys. B 25, 319–327 (2011)

Savescu, M., Bi-Irawy, A.H., Hilal, E.M.: Optical solitons in birefringent fibers with four-wave mixing for Kerr law nonlinearity. Optoelectron. Adv. Mat. 9, 10–13 (2015)

Mirzazadeh, M., Eslami, M., Zerrad, E.: Optical solitons in nonlinear directional couplers by sineCcosine function method and Bernoullis equation approach. Nonlinear Dyn. 81, 1–17 (2015)

Louaked, M., Hanich, L.: TVD scheme for the shallow water equations. J. Hydraul. Res 36, 363–378 (1998)

Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. Res. I. Math. Sci. 19, 943–1001 (1983)

Chen, Y., Liu, R.: Some new nonlinear wave solutions for two (3 + 1)-dimensional equations. Appl. Math. Comput. 260, 397–411 (2015)

Zeng, Z.F., Liu, J.G., Nie, B.: Multiple-soliton solutions, soliton-type solutions and rational solutions for the (3 + 1)-dimensional generalized shallow water equation in oceans, estuaries and impoundments. Nonlinear Dyn. 86, 667–675 (2016)

Tian, B., Gao, Y.T.: Beyond travelling waves: a new algorithm for solving nonlinear evolution equations. Comput. Phys. Commun. 95, 139–142 (1996)

Zayed, E.M.E.: Traveling wave solutions for higher dimensional nonlinear evolution equations using the $$(\frac{G^{\prime }}{G})$$ ( G ′ G ) -expansion method. J. Appl. Math. Inform. 28, 383–395 (2010)

Tang, Y.N., Ma, W.X., Xu, W.: Grammian and Pfaffian solutions as well as Pfaffianization for a (3 + 1)-dimensional generalized shallow water equation. Chin. Phys. B 21, 85–91 (2012)

Wu, J., Xing, X., Geng, X.: Generalized bilinear differential operators application in a (3 + 1)-dimensional generalized shallow water equation. Adv. Math. Phys. 4, 1–9 (2015)

Tang, Y.N., Ma, W.X., Xu, W.: Wronskian determinant solutions of the (3 + 1)-dimensional Jimbo-Miwa equation. Appl. Math. Comput. 21, 8722–8730 (2011)

Darvishi, M.T., Najafi, M.: Some complexiton type solutions of the (3 + 1)-dimensional Jimbo-Miwa equation. Int. J. Comput. Math. Sci. 1, 25–27 (2012)

Tang, X.Y., Liang, Z.F.: Variable separation solutions for the (3 + 1)-dimensional Jimbo-Miwa equation. Phys. Lett. A 6, 398–402 (2006)

Turgut, Öziş, Aslan, İsmail: Exact and explicit solutions to the (3 + 1)-dimensional Jimbo-Miwa equation via the exp-function method. Phys. Lett. A 47, 7011–7015 (2008)

Ma, S.H., Fang, J.P., Zheng, C.L.: New exact solutions for the (3 + 1)-dimensional Jimbo-Miwa system. Chaos Soliton Fract. 3, 1352–1355 (2009)

Li, Z., Dai, Z.: Abundant new exact solutions for the (3 + 1)-dimensional Jimbo-Miwa equation. J. Math. Anal. Appl. 2, 587–590 (2010)

Hong, W., Oh, K.S.: New solitonic solutions to a (3 + 1)-dimensional Jimbo-Miwa equation. Comput. Math. Appl. 5, 29–31 (2000)

Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–277 (1934)

Lambert, F., Loris, I., Springael, J.: On a direct bilinearization method: Kaup’s higher-order water wave equation as a modified nonlocal Boussinesq equation. J. Phys. A 28, 5325–5334 (2007)

Fan, E., Chow, K.W.: Darboux covariant Lax pairs and infinite conservation laws of the (2+ 1)-dimensional breaking soliton equation. J. Math. Phys. 2, 023504–10 (2011)

Hirota, R.: Exact envelope soliton solutions of a nonlinear wave equation. J. Math. Phys. 7, 805–809 (1973)

Hirota, R., Ohta, Y.: Hierarchies of coupled soliton equations I. J. Phys. Soc. 3, 798–809 (1991)

Tian, S., Zhang, H.: Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. J. Math. Anal. Appl. 2, 585–608 (2010)

Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the (1 + 1)-dimensional and (2 + 1)-dimensional Ito equation. Chaos Soliton Fract. 47, 27–41 (2013)

Tian, F.S., Ma, P.L.: On the quasi-periodic wave solutions and asymptotic analysis to a(3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation. Commun. Theor. Phys. 8, 245–258 (2014)