Biliary excretion of copper, manganese, and horseradish peroxidase in eisai hyperbilirubinemic mutant rats (EHBRs) with defective biliary excretion of glutathione

Biological Trace Element Research - Tập 55 - Trang 181-189 - 1996
Naoki Sugawara1, Yurong Lai1, Motoyuki Yuasa1, Sanjit Kumar Dhar2, Koji Arizono2
1Department of Public Health, School of Medicine, Sapporo Medical University, Sapporo, Japan
2Faculty of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan

Tóm tắt

A mixture of copper (Cu) (0.38 mg/kg), manganese (Mn) (0.038 mg/kg), and horseradish peroxidase (HRP) (5.0 mg/kg) was injected intravenously (iv) into mature Eisai hyperbilirubinemic rats (EHBRs) and Sprague-Dawley rats (SDRs). Bile was collected at 10-min intervals before and after the injection, under anesthesia. The liver, kidneys, and blood were removed 40 min after the injection. The serum-conjugated bilirubin concentration was 0.85 mg/dL in the EHBRs, but was below detection limits in the SDRs. The bile-reduced glutathione (GSH) concentration was much lower in the EHBRs (0.04 mg/mL) than in the SDRs (1.30 mg/mL). However, the hepatic GSH concentration was about 1.6 times higher in EHBRs (2.26 mg/g liver) than in SDRs (1.43 mg/g liver). The low, excretion of biliary GSH was not caused by the activity of GGT in the liver, since there was no significant difference in the activity between the two groups (5.8±3.4 and 4.6±2.4 μmol p-nitroaniline/g protein/30 min in SDR and EHBR groups, respectively). There was a delay of initial biliary excretion of Cu in EHBRs compared to SDRs. The biliary concentration of Mn was slightly lower in EHBRs than in SDRs. Forty min after the injection of metals, however, there was no difference between hepatic concentrations of the two metals in the two groups. Our results suggest that abnormal deposition of the two metals is not observed naturally in EHBRs. Injected HRP was excreted rapidly and notably in the EHBRs compared to SDRs. Furthermore, the biliary concentration of β-N-acetyl-D-glucosaminidase (β-NAG) was significantly higher in EHBRs than in SDRs. Rapid biliary excretion of Cu, but not of Mn, may be related to the hepatobiliary transport of GSH, but the transport and lysosomal function do not originally regulate the biliary excretion of Cu.

Tài liệu tham khảo

J. F. Crigler and V. Najjar,Pediatrics 10, 169–180 (1952). W. T. Foulkes, H. R. Butt, C. A. Owen, F. F. Whitcomb Jr., and H. L. Mason,Medicine 38, 25–46 (1959). T. N. Dubin and F. B. Johnson,Medicine 33, 155–197 (1954). A. B. Rotor, L. Manahan, and A. Florentin,Acta Med. Philipp. 5, 37–48 (1948). P. L. M. Jansen, W. H. Peter, and W. N. Lamers,Hepatology 5, 573–579 (1985). M. Polhuijs, F. Kuipers, R. J. Vonk, and G. J. Mulder,J. Pharmacol. Exp. Ther. 249, 874–878 (1989). T. Mikami, Y. Nozaki, O. Tagaya, S. Hosokawa, T. Nakura, H. Mori, S. Kondou, Y. Matubara, and T. Ohgoh,Cong. Anom. 26, 250–251 (1986). S. K. Dhar, M. Takiguchi, S. Kitajima, K. Arizono, and T. Ariyoshi,Trace Elem. Electrolytes 13, 42–46 (1996). C. D. Klaassen,Am. J. Physiol. 234, E47-E53 (1978). C. D. Klaassen,Toxicol. Appl. Pharmacol. 29, 458–469 (1974). N. Sugawara, D. Li, and C. Sugawara,Arch. Toxicol. 68, 520–523 (1994). H. Nederbragt,Biochem. Pharmacol. 38, 3399–3406 (1989). F. Tietze,Anal. Biochem. 27, 502–522 (1969). B. Chance and A. C. Maehly,Methods in Enzymology, vol. 2 Academic, New York, pp. 769–775 (1955). N. Tateishi, T. Higashi, S. Shinya, A. Naruse, and Y. Sakamoto,J. Biochem. 75, 93–103 (1974). H. Takikawa, N. Sano, T. Narita, Y. Uchida, M. Yamanaka, T. Horie, T. Mikami, and O. Tagaya,Hepatology,14, 352–360 (1991). F. J. Haberich and W. Gehring,Z. Gastroenterol. 20, 93–100 (1982). T. Kitamura, P. Jansen, C. Hardenbrook, Y. Kamimoto, Z. Gatmaitan, and I. M. Arias,Proc. Natl. Acad. Sci. USA 87, 3557–3561 (1990). N. Kaplowitz, D. E. Eberle, J. Petrini, J. Touloukian, M. C. Corvasce, and J. Kuhlenkamp,J. Pharmacol. Exp. Ther. 224, 141–147 (1983). J. C. Fernandez-Checa, H. Takikawa, T. Horie, M. Ookhtens, and N. Kaplowitz.J. Biol. Chem. 267, 1667–1673 (1992). M. Ookhtens, I. Lyon, J. Fernandez-Checa, and N. Kaplowitz,J. Clin. Invest. 82, 608–616 (1988). J. Alexander and J. Aaseth,Biochem. Pharmacol. 29, 2129–2133 (1980). N. Sugawara, D. Li, M. Katakura, and C. Sugawara,Biol. Trace Elem. Res. 46, 125–134 (1994). M. Sato and I. BremnerBiochem. J. 223, 475–479 (1984). N. Sugawara, D. Li, and C. Sugawara,Res. Commun. Mol. Pathol. Pharmacol. 85, 217–226 (1994). Y. Yamaguchi, M. Heiny, and J. D. Gitlin,Biochem. Biophys. Res. Commun. 197, 271–277 (1993). D. M. Dankes,Metabolic Basis of Inherited disease, McGraw-Hill, New York, pp. 1411–1413 (1989). P. C. Bull, G. R. Thomas, J. M. Rommens, J. R. Forbes, and D. W. Cox,Nature Genet. 5, 327–337 (1993). R. Houwen, M. Dijkstra, F. Kuipers, E. P. Smit, R. Havinga, and R. J. Vonk,Biochem. Pharmacol. 39, 1039–1044 (1990). P. S. Papavasiliou, S. T. Miller, and G. C. Cortzias,Am. J. Physiol. 211, 211–216 (1966). J. C. Carter Jr., W. J. Miller, M. W. Neathery, R. P. Gentry, P. E. Stake, and D. M. Blackmon,J. Anim. Sci. 38, 1284–1290 (1974). M. Tichy and M. Cikrt,Arch. Toxicol. 29, 51–58 (1972). K. H. Sternlieb, C. J. A. Van den Hamer, A. G. Morell, S. Alpert, G. Gregoriadis, and I. H. Scheinberg,Gastroenterology,64, 99–105 (1973). F. Kuipers, M. Dijkstra, R. Havinga, and R. J. Vonk,Hepatology 18, 129A (abstract) (1993). R. H. Renston, D. G. Maloney, A. L. Jones, G. T. Hradek, K. Y. Wong, and I. D. Goldfine,Gastroenterology 78, 1373–1388 (1980).