Bildgebung bei Kindern und Jugendlichen intraoperativ, bei ausgewählten Frakturen und im Verlauf nach konservativer und operativer Behandlung

Springer Science and Business Media LLC - Tập 126 Số 1 - Trang 42-54 - 2023
K. Dresing1, Francisco Fernández Fernández2, Peter Schmittenbecher3, Kaya Dresing4, P. C. Strohm5, Christopher Spering1, Ralf Kraus6, NULL AUTHOR_ID
1Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, Universitätsmedizin Göttingen, Göttingen, Deutschland
2Kindertraumatologie, Klinikum Stuttgart Olgahospital, Stuttgart, Deutschland
3Kinderchirurgische Klinik, Städtisches Klinikum Karlsruhe, Karlsruhe, Deutschland
4Darmstädter Kinderkliniken Prinzessin Margaret, Darmstadt, Deutschland
5Klinik für Orthopädie und Unfallchirurgie, Klinikum Bamberg, Bamberg, Deutschland
6Klinik für Unfallchirurgie und Orthopädie, Klinikum Bad Hersfeld, Bad Hersfeld, Deutschland

Tóm tắt

Zusammenfassung Zusammenfassung Die Indikation für Röntgenuntersuchungen bei pädiatrischen und jugendlichen Traumapatienten sollte ALARA (as low as reasonable achievable)  folgen. Aufgrund der Wirkung der Strahlung auf das wachsende sensible Gewebe dieser jungen Patienten sollte immer eine strenge Indikation zum Strahleneinsatz und bei Kontrollen nach Frakturversorgung gestellt werden. Methoden Eine Online-Umfrage der Sektion Kindertraumatologie (SKT) der Deutschen Gesellschaft für Unfallchirurgie (DGU) vom 15.11.2019 bis 29.02.2020. Zielgruppen waren Unfall‑, Kinder- und Allgemeinchirurgen sowie Orthopäden. Ergebnisse Teilnehmer: 788. Intraoperative Anwendungen: Kollimation 50 % immer, Postprocessing zur Vergrößerung 40 %, gepulstes Röntgen 47 % und 89 % keine kontinuierliche Fluoroskopie; 63 % Osteosynthese nie direkt auf dem Bildverstärker. Röntgenkontrollen nach Metallentfernung werden von 24 % nie verwendet. Nach operierter suprakondylärer Humerusfraktur werden Kontrollen bis zu 6 Mal durchgeführt. Nach distaler Radius-Grünholzfraktur verzichten 40 % auf weitere Röntgenkontrollen, nach konservativ versorgter Clavicularschaftfraktur 55 % auf weitere Kontrollen, andere röntgen mehrfach. Nach nicht dislozierter konservativ versorgter Tibiaschaftfraktur empfehlen 63 % eine radiologische Kontrolle nach einer Woche in zwei Ebenen, 24 % nach 2 Wochen, 37 % nach 4 Wochen und 32 % nach 6 Wochen. Diskussion Die Analyse zeigt, dass es kein einheitliches radiologisches Management von Kindern und Jugendlichen mit Frakturen unter den Befragten gibt. Bei einigen Indikation für den Einsatz von Röntgenstrahlen scheint der Nutzen nicht evident zu sein. Das ALARA-Prinzip scheint nicht durchgängig beachtet zu werden. Schlussfolgerung Vergleicht man die dokumentierten Ergebnisse der Umfrage mit den Konsensergebnissen der SKT zeigen sich Unterschiede.

Từ khóa


Tài liệu tham khảo

Ackermann O, Simanowski J, Eckert K (2020) Fracture Ultrasound of the Extremities. Ultraschall Med 41:12–28. https://doi.org/10.1055/a-1023-1782

Adamich J, Howard A, Camp M (2018) Do All Clavicle Fractures in Children Need To Be Managed by Orthopedic Surgeons. Pediatr Emerg Care 34:706–710. https://doi.org/10.1097/PEC.0000000000001269

Baek SW, Ryu JS, Jung CH, Lee JH, Kwon WK, Woo NS, Kim HK, Kim JH (2013) A Randomized Controlled Trial about the Levels of Radiation Exposure Depends on the Use of Collimation C‑arm Fluoroscopic-guided Medial Branch Block. Korean J Pain 26:148–153. https://doi.org/10.3344/kjp.2013.26.2.148

Bar-On E, Weigl DM, Becker T, Katz K, Konen O (2010) Intraoperative C‑arm radiation affecting factors and reduction by an intervention program. J Pediatr Orthop 30:320–323. https://doi.org/10.1097/BPO.0b013e3181d98f06

Bosanquet DC, Green G, Bosanquet AJ, Galland RB, Gower-Thomas K, Lewis MH (2011) Doctors’ knowledge of radiation—a two-centre study and historical comparison. Clin Radiol 66:748–751. https://doi.org/10.1016/j.crad.2011.03.009

Brennan A, Porter H, Rose M, Workman A, Allisy-Roberts P. Medical and Dental Guidance Notes A good practice guide on all aspects of ionising radiation protection in the clinical environment prepared by Institute of Physics and Engeineering in Medicine with the suppport of the National Radiological Protection Board Health and Safety Executive The Health Departments The Environmental Agencies. 2000:1–280. http://files.site-fusion.co.uk/webfusion117640/file/medicalguidancenotes_1.pdf. Zugegriffen: 28. Feb. 2021

Brenner DJ (2010) Slowing the increase in the population dose resulting from CT scans. Radiat Res 174:809–815. https://doi.org/10.1667/RR1859.1

Calder JD, Solan M, Gidwani S, Allen S, Ricketts DM (2002) Management of paediatric clavicle fractures—is follow-up necessary? An audit of 346 cases. Ann R Coll Surg Engl 84:331–333. https://doi.org/10.1308/003588402760452457

editors. Radiation dose from introperative fluoroscopy in paediatrics. 2018; European Congress of Radiology 2018; 2018.

Chaar-Alvarez FM, Warkentine F, Cross K, Herr S, Paul RI (2011) Bedside ultrasound diagnosis of nonangulated distal forearm fractures in the pediatric emergency department. Pediatr Emerg Care 27:1027–1032. https://doi.org/10.1097/PEC.0b013e318235e228

Chapman T, Martin DP, Williamson C, Tinsley B, Wang ML, Ilyas AM (2018) Mini C‑Arm Fluoroscopy: Does Its Configuration Matter for Radiation Exposure to the Surgeon. Hand (n Y) 13:552–557. https://doi.org/10.1177/1558944717715139

Chartier LB, Bosco L, Lapointe-Shaw L, Chenkin J (2017) Use of point-of-care ultrasound in long bone fractures: a systematic review and meta-analysis. CJEM 19:131–142. https://doi.org/10.1017/cem.2016.397

Chien M, Bulloch B, Garcia-Filion P, Youssfi M, Shrader MW, Segal LS (2011) Bedside ultrasound in the diagnosis of pediatric clavicle fractures. Pediatr Emerg Care 27:1038–1041. https://doi.org/10.1097/PEC.0b013e318235e965

Cho JH, Kim JY, Kang JE, Park PE, Kim JH, Lim JA, Kim HK, Woo NS (2011) A Study to Compare the Radiation Absorbed Dose of the C‑arm Fluoroscopic Modes. Korean J Pain 24:199–204. https://doi.org/10.3344/kjp.2011.24.4.199

De Silva T, Punnoose J, Uneri A, Mahesh M, Goerres J, Jacobson M, Ketcha MD, Manbachi A, Vogt S, Kleinszig G, Khanna AJ, Wolinksy JP, Siewerdsen JH, Osgood G, (2018) Virtual fluoroscopy for intraoperative C‑arm positioning and radiation dose reduction. J Med Imaging (Bellingham), 5: 015005, https://doi.org/10.1117/1.JMI.5.1.015005

Dresing K, Fernandez F, Strohm P, Schmittenbecher P, Kraus P, (2021) Röntgendiagnostik bei Frakturen im Kindes- und Jugendalter – Konsensusbericht des wissenschaftlichen Arbeitskreises der Sektion Kindertraumatologie der DGU. Unfallchirurg, 124: 427–430, DOI: https://doi.org/10.1007/s00113-021-00994-9

Eismann EA, Wall EJ, Thomas EC, Little MA, (2014) Direct beam radiation exposure to surgeons during pinning of supracondylar humerus fractures: does C‑arm position and the attending surgeon matter. J Pediatr Orthop, 34: 166–171, https://doi.org/10.1097/BPO.0000000000000086

Filemaker, (2018) Claris FileMaker Pro [Computer software] 16.0.6.00.

Furlow B (2011) Radiation protection in pediatric imaging. Radiol Technol 82:421–439

Garg S, Bloch N, Cyr M, Carry P (2016) Routine radiographs at time of pin removal after closed reduction and percutaneous pinning for type 2 supracondylar humerus fractures do not change management: a retrospective cohort study. J Child Orthop 10:329–333. https://doi.org/10.1007/s11832-016-0744-6

Georgiadis GM, Tremains MR, Dennis MJ (2003) Postoperative upper extremity radiographs using the image intensifier: a simple adjunct to the “inverted” C‑arm technique. J Orthop Trauma 17:123–125. https://doi.org/10.1097/00005131-200302000-00008

Greffier J, Etard C, Mares O, Pereira F, Defez D, Duverger C, Branchereau P, Beregi JP, Coulomb R, Larbi A (2019) Patient dose reference levels in surgery: a multicenter study. Eur Radiol 29:674–681. https://doi.org/10.1007/s00330-018-5600-2

Guide Specific Safety (2018) Radiation protection and safety in medical uses of ionizing radiation. IAEA Safety Standards, Series No. SSG-46: 1–324

Hagstrom LS, Ferrick M, Galpin R (2015) Outcomes of operative versus nonoperative treatment of displaced pediatric clavicle fractures. Orthopedics 38:e135–8. https://doi.org/10.3928/01477447-20150204-62

Hanel DP, Robson DB, (1987) The image intensifier as an operating table. J Hand Surg Am, 12: 322–323, https://doi.org/10.1016/s0363-5023(87)80302‑7

Hirshfeld JW, Ferrari VA, Bengel FM, Bergersen L, Chambers CE, Einstein AJ, Eisenberg MJ, Fogel MA, Gerber TC, Haines DE, Laskey WK, Limacher MC, Nichols KJ, Pryma DA, Raff GL, Rubin GD, Smith D, Stillman AE, Thomas SA, Tsai TT, Wagner LK, Wann LS (2018) HRS/NASCI/SCAI/SCCT Expert Consensus Document on Optimal Use of Ionizing Radiation in Cardiovascular Imaging: Best Practices for Safety and Effectiveness: A Report of the American College of Cardiology Task Force on. Cardiol, Bd. 71. Expert, Consensus Decision Pathways. J Am Coll, S e283–e351 https://doi.org/10.1016/j.jacc.2018.02.016 (2018 ACC)

Hsu RY, Lareau CR, Kim JS, Koruprolu S, Born CT, Schiller JR (2014) The Effect of C‑Arm Position on Radiation Exposure During Fixation of Pediatric Supracondylar Fractures of the Humerus. J Bone Joint Surg Am 96:e129. https://doi.org/10.2106/JBJS.M.01076

Jeetoo SD, Smith J, Pitcher RD (2019) Radiological Studies in Very Low Birth Weight and Extremely Low Birth Weight Neonates: „ALARA“ Revisited. J Trop Pediatr. https://doi.org/10.1093/tropej/fmz080

Jones DG, Stoddart J (1998) Radiation use in the orthopaedic theatre: a prospective audit. Aust N Z J Surg 68:782–784. https://doi.org/10.1111/j.1445-2197.1998.tb04676.x

Kaplan DJ, Patel JN, Liporace FA, Yoon RS (2016) Intraoperative radiation safety in orthopaedics: a review of the ALARA (As low as reasonably achievable) principle. Patient Saf Surg 10:27

Karalius VP, Stanfield J, Ashley P, Lewallen LW, DeDeugd CM, Walker J, Larson AN, Milbrandt TA (2017) The Utility of Routine Postoperative Radiographs After Pinning of Pediatric Supracondylar Humerus Fractures. J Pediatr Orthop 37:e309–e312. https://doi.org/10.1097/BPO.0000000000001000

Karamitopoulos MS, Dean E, Littleton AG, Kruse R, (2012) Postoperative radiographs after pinning of supracondylar humerus fractures: are they necessary. J Pediatr Orthop, 32: 672–674, https://doi.org/10.1097/BPO.0b013e31824b2b37

Keil H, Beisemann N, Swartman B, Vetter SY, Grützner PA, Franke J (2018) Intra-operative imaging in trauma surgery. Efort Open Rev 3:541–549. https://doi.org/10.1302/2058-5241.3.170074

Kleinerman RA, (2006) Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol, 36 Suppl 2: 121–125, https://doi.org/10.1007/s00247-006-0191-5

Kraus R (2013) Primary and follow-up diagnostics in growth age fractures (Primär-und Verlaufsdiagnostik bei Frakturen im Wachstumsalter). OUP, , S 572–576 https://doi.org/10.3238/oup.2013.0572-0576

Lee K, Lee KM, Park MS, Lee B, Kwon DG, Chung CY, (2012) Measurements of surgeons’ exposure to ionizing radiation dose during intraoperative use of C‑arm fluoroscopy. Spine (Phila Pa 1976), 37: 1240–1244, https://doi.org/10.1097/BRS.0b013e31824589d5

Mahesh M (2001) Fluoroscopy: patient radiation exposure issues. Radiographics 21:1033–1045. https://doi.org/10.1148/radiographics.21.4.g01jl271033

Mansor Y, Givon A, Sherr-Lurie N, Seltser A, Schindler A, Givon U (2019) Is a radiograph needed one week after internal fixation of a supracondylar humeral fracture. J Pediatr Orthop B 28:536–541. https://doi.org/10.1097/BPB.0000000000000659

Marco RAW, Curry MC, Mujezinovic F, Linton J (2020) Decreased radiation exposure using pulsed fluoroscopy and a detachable pedicle marker and probe to place pedicle screws: a comparison to current fluoroscopy techniques and CT navigation. Spine Deform 8:405–411. https://doi.org/10.1007/s43390-020-00086-5

Martin DP, Chapman T, Williamson C, Tinsley B, Ilyas AM, Wang ML (2019) Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C‑Arm Use. Hand (n Y) 14:565–569. https://doi.org/10.1177/1558944717743600

Meyer S, Groenewald WA, Pitcher RD (2017) Diagnostic reference levels in low- and middle-income countries: early “ALARAm” bells. Acta Radiol 58:442–448. https://doi.org/10.1177/0284185116658681

Nadig N, Shaw KA, Mottern E, Bojescul J, Mueller T (2018) Inverted C‑arm Orientation During Simulated Hip Arthroscopic Surgery. Orthop J Sports Med 6:2325967118801275. https://doi.org/10.1177/2325967118801275

O’Neill BJ, Molloy AP, Curtin W (2011) Conservative management of paediatric clavicle fractures. Int J Pediatr 2011:172571. https://doi.org/10.1155/2011/172571

Ojodu I, Ogunsemoyin A, Hopp S, Pohlemann T, Ige O, Akinola O (2018) C‑arm fluoroscopy in orthopaedic surgical practice. Eur J Orthop Surg Traumatol 28:1563–1568. https://doi.org/10.1007/s00590-018-2234-7

Panchbhavi VK, Mays MM, Trevino S (2012) Accuracy of intraoperative fluoroscopy with and without laser guidance in foot and ankle surgery. Foot Ankle Int 33:415–419. https://doi.org/10.3113/FAI.2012.0415

Patel NG, Mohamed AM, Cooper G, McFadyen I (2014) Ionising radiation exposure in paediatric trauma. Ann R Coll Surg Engl 96:190–193. https://doi.org/10.1308/003588414X13814021677313

Patel NK, Horstman J, Kuester V, Sambandam S, Mounasamy V (2018) Pediatric Tibial Shaft Fractures. Indian J Orthop 52:522–528. https://doi.org/10.4103/ortho.IJOrtho_486_17

Pavone V, DE Cristo C, Testa G, Canavese F, Lucenti L, Sessa G, (2018) Does age affect outcome in children with clavicle fracture treated conservatively? QuickDash and MRC evaluation of 131 consecutive cases. Minerva Pediatr, https://doi.org/10.23736/S0026-4946.18.05101-0

Phelps K, Coleman M, Seymour R, Bosse M (2018) Utility of Routine Postoperative Radiographs After Fixation of Lower Extremity Fractures. J Am Acad Orthop Surg 26:799–808. https://doi.org/10.5435/JAAOS-D-17-00114

Pinto DJV, Dinesh KVN, Shenoy RM, Kamath SU, Reddy V, Chalapalli S (2014) Optimal position and posture of operating surgeon to reduce radiation during intra-operative use of image intensifier in extremity surgeries. Int J Biomed Adv Res 5:623–626

Plastaras C, Appasamy M, Sayeed Y, McLaughlin C, Charles J, Joshi A, Macron D, Pukenas B (2013) Fluoroscopy procedure and equipment changes to reduce staff radiation exposure in the interventional spine suite. Pain Phys 16:E731–8

Raducha JE, Swarup I, Schachne JM, Cruz AI, Fabricant PD (2019) Tibial Shaft Fractures in Children and Adolescents. Jbjs Rev 7:e4. https://doi.org/10.2106/JBJS.RVW.18.00047

Randsborg PH, Sivertsen EA (2012) Classification of distal radius fractures in children: good inter- and intraobserver reliability, which improves with clinical experience. BMC Musculoskelet Disord 13:6. https://doi.org/10.1186/1471-2474-13-6

Rehani MM, Ciraj-Bjelac O, Vañó E, Miller DL, Walsh S, Giordano BD, Persliden J (2010) Radiological protection in fluoroscopically guided procedures performed outside the imaging department. Ann ICRP 40:1–102

Richter PH, Steinbrener J, Schicho A, Gebhard F (2016) Does the choice of mobile C‑arms lead to a reduction of the intraoperative radiation dose. Injury 47:1608–1612. https://doi.org/10.1016/j.injury.2016.04.031

Rimpler A, Veit R, Nosske D, Brix G (2010) Radiation hygiene in medical X‑ray imaging, part 1: physical and technical basics. Radiologe 50:809–820. https://doi.org/10.1007/s00117-010-2045-2

Roukema GR, De Jong L, Van Rijckevorsel VAJIM, Van Onkelen RS, Bekken JA, Van der Vlies CH, Van Lieshout EMM (2019) Radiation exposure during direct versus indirect image acquisition during fluoroscopy-controlled internal fixation of a hip fracture: Results of a randomized controlled trial. Injury 50:2263–2267. https://doi.org/10.1016/j.injury.2019.09.035

Ruffing T, Danko T, Henzler T, Weiss C, Hofmann A, Muhm M (2017) Number of positive radiographic findings in pediatric trauma patients. Emerg Radiol 24:281–286. https://doi.org/10.1007/s10140-017-1482-x

Salipas A, Kimmel LA, Edwards ER, Rakhra S, Moaveni AK (2016) Natural history of medial clavicle fractures. Injury 47:2235–2239. https://doi.org/10.1016/j.injury.2016.06.011

Saroki AJ, Wijdicks C, Philippon MJ, Bedi A (2016) Orthopaedic surgeons’ use and knowledge of ionizing radiation during surgical treatment for femoroacetabular impingement. Knee Surg Sports Traumatol Arthrosc 24:3962–3970. https://doi.org/10.1007/s00167-015-3734-1

Schlechter JA, Dempewolf M (2015) The utility of radiographs prior to pin removal after operative treatment of supracondylar humerus fractures in children. J Child Orthop 9:303–306. https://doi.org/10.1007/s11832-015-0673-9

Slongo T (2020) Technique and biomechanics of Kirschner wire osteosynthesis in children. Oper Orthop Traumatol 32:509–529. https://doi.org/10.1007/s00064-020-00684-6

SurveyMonkey, (2019) SurveyMonkey [computer software].

Tasbas BA, Yagmurlu MF, Bayrakci K, Ucaner A, Heybeli M (2003) Which one is at risk in intraoperative fluoroscopy? Assistant surgeon or orthopaedic surgeon. Arch Orthop Trauma Surg 123:242–244. https://doi.org/10.1007/s00402-003-0516-x

Team JASP, (2020) JASP (Version 0.14.1)[Computer software].

Ting BL, Kalish LA, Waters PM, Bae DS (2016) Reducing Cost and Radiation Exposure During the Treatment of Pediatric Greenstick Fractures of the Forearm. J Pediatr Orthop 36:816–820. https://doi.org/10.1097/BPO.0000000000000560

Tremains MR, Georgiadis GM, Dennis MJ (2001) Radiation exposure with use of the inverted-c-arm technique in upper-extremity surgery. J Bone Joint Surg Am 83:674–678. https://doi.org/10.2106/00004623-200105000-00005

Waseem M, Kenny NW (2000) The image intensifier as an operating table—a dangerous practice. J Bone Joint Surg Br 82:95–96. https://doi.org/10.1302/0301-620x.82b1.9323

Werncke T, von Falck C, Luepke M, Stamm G, Wacker FK, Meyer BC (2015) Collimation and Image Quality of C‑Arm Computed Tomography: Potential of Radiation Dose Reduction While Maintaining Equal Image Quality. Invest. Radiol, Bd. 50, S 514–521 https://doi.org/10.1097/RLI.0000000000000158

Williamson D, Watura R, Cobby M (2000) Ultrasound imaging of forearm fractures in children: a viable alternative. J Accid Emerg Med 17:22–24. https://doi.org/10.1136/emj.17.1.22

World Health Organization (2016) WHO Library Cataloguing-in-Publication Data. Communicating radiation risks in paediatric imaging: information to support health care discussions about benefit and risk. 1.Radiation Exposure. 2.Radiation Injuries—prevention and control. 3.Informed Consent. 4.Diagnostic Imaging. 5.Pediatrics. 6.Patient Education as Topic. 7.Risk Factors. I.World Health Organization. ISBN 978 92 4 151034 9 (NLM classification: WN 240)

Yamashita K, Higashino K, Hayashi H, Hayashi F, Fukui Y, Sairyo K (2017) Pulsation and Collimation During Fluoroscopy to Decrease Radiation: A Cadaver Study. JB JS Open Access 2:e0039. https://doi.org/10.2106/JBJS.OA.17.00039

Zusman NL, Barney NA, Halsey MF, Yang S (2019) Utility of Follow-up Radiographs After Pin Removal in Supracondylar Humerus Fractures: A Retrospective Cohort Study. J Am Acad Orthop Surg. https://doi.org/10.5435/JAAOS-D-18-00415

Zusman NL, Barney NA, Woelber E, Yang S (2020) A Systematic Review of the Utility of Postoperative Imaging in the Management of Pediatric Supracondylar Humerus Fractures. J Pediatr Orthop 40:e430–e434