Bilayered electrospun membranes composed of poly(lactic-acid)/natural rubber: A strategy against curcumin photodegradation for wound dressing application

Reactive and Functional Polymers - Tập 163 - Trang 104889 - 2021
Paulo A.M. Chagas1,2, Rodrigo Schneider1,3, Danilo M. dos Santos1, Adriano J.G. Otuka4, Cleber R. Mendonça4, Daniel S. Correa1,2,3
1Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
2PPG-Biotec, Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil
3PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil
4São Carlos Institute of Physics, University of São Paulo, PO Box 369, São Carlos, SP 13560-970, Brazil

Tài liệu tham khảo

Hosseini Salekdeh, 2020, Assessment of the efficacy of Tributylammonium alginate surface-modified polyurethane as an antibacterial elastomeric wound dressing for both noninfected and infected full-thickness wounds, ACS Appl. Mater. Interfaces, 12, 3393, 10.1021/acsami.9b18437 dos Santos, 2018, Nanostructured electrospun nonwovens of poly(ε-caprolactone)/quaternized chitosan for potential biomedical applications, Carbohydr. Polym., 186, 110, 10.1016/j.carbpol.2018.01.045 Miguel, 2019, Chitosan based-asymmetric membranes for wound healing: a review, Int. J. Biol. Macromol., 127, 460, 10.1016/j.ijbiomac.2019.01.072 Ambekar, 2019, Advancements in nanofibers for wound dressing: a review, Eur. Polym. J., 117, 304, 10.1016/j.eurpolymj.2019.05.020 Simões, 2018, Recent advances on antimicrobial wound dressing: a review, Eur. J. Pharm. Biopharm., 127, 130, 10.1016/j.ejpb.2018.02.022 Mercante, 2019, Electrospun ceramic nanofibers and hybrid-nanofiber composites for gas sensing, ACS Appl. Nano Mater., 2, 4026, 10.1021/acsanm.9b01176 Mao, 2020, Electrospun fibers: an innovative delivery method for the treatment of bone diseases, Expert Opin. Drug Deliv., 0, 1 Lee, 2020, Atomic layer deposition and electrospinning as membrane surface engineering methods for water treatment: a short review, Environ. Sci. Water Res. Technol., 1765, 10.1039/C9EW01134J Mane, 2020, Electrospun nanofiber-based cancer sensors: A review, Int. J. Pharm., 583, 10.1016/j.ijpharm.2020.119364 Kausar, 2020, Polymeric nanocomposite via electrospinning: assessment of morphology, physical properties and applications, J. Plast. Film Sheeting. Locilento, 2019, Biocompatible and biodegradable electrospun nanofibrous membranes loaded with grape seed extract for wound dressing application, J. Nanomater., 2019, 1, 10.1155/2019/2472964 Memic, 2019, Latest Progress in electrospun nanofibers for wound healing applications, ACS Appl. Bio Mater., 2, 952, 10.1021/acsabm.8b00637 Lin, 2020, Preparation of graphene-embedded hydroxypropyl cellulose/chitosan/polyethylene oxide nanofiber membranes as wound dressings with enhanced antibacterial properties, Cellulose., 27, 2651, 10.1007/s10570-019-02940-w Mayandi, 2020, Multifunctional Antimicrobial nanofiber dressings containing ϵ-polylysine for the eradication of bacterial bioburden and promotion of wound healing in critically colonized woUNDS, ACS Appl. Mater. Interfaces, 12, 15989, 10.1021/acsami.9b21683 Naeimi, 2020, In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/ polyvinyl alcohol incorporating honey and Nepeta dschuparensis, Carbohydr. Polym., 240, 116315, 10.1016/j.carbpol.2020.116315 dos Santos, 2020, Advances in functional polymer nanofibers: from spinning fabrication techniques to recent biomedical applications, ACS Appl. Mater. Interfaces, 12, 45673, 10.1021/acsami.0c12410 Mulholland, 2020, Electrospun biomaterials in the treatment and prevention of scars in skin wound healing, Front. Bioeng. Biotechnol., 8, 1, 10.3389/fbioe.2020.00481 Chen, 2020, New forms of electrospun nanofiber materials for biomedical applications, J. Mater. Chem. B, 8, 3733, 10.1039/D0TB00271B Mele, 2016, Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings, J. Mater. Chem. B, 4, 4801, 10.1039/C6TB00804F Fatahian, 2020, A novel hemostat and antibacterial nanofibrous scaffold based on poly(vinyl alcohol)/poly(lactic acid), J. Bioact. Compat. Polym., 10.1177/0883911520913900 Bi, 2020, In vitro and In vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing, Polymers (Basel), 12, 839, 10.3390/polym12040839 Chen, 2020, 3D porous poly(lactic acid)/regenerated cellulose composite scaffolds based on electrospun nanofibers for biomineralization, Colloids Surfaces A Physicochem. Eng. Asp., 585, 124048, 10.1016/j.colsurfa.2019.124048 1999 1999 WATTS, 1999 Ali Shah, 2013, Biodegradation of natural and synthetic rubbers: a review, Int. Biodeterior. Biodegrad., 83, 145, 10.1016/j.ibiod.2013.05.004 Wattanakaroon, 2017, Albumin-natural rubber latex composite as a dermal wound dressing, Mater. Today Proc., 4, 6633, 10.1016/j.matpr.2017.06.178 Azarian, 2019, Biocompatibility and biodegradability of filler encapsulated chloroacetated natural rubber/polyvinyl alcohol nanofiber for wound dressing, Mater. Sci. Eng. C, 103, 109829, 10.1016/j.msec.2019.109829 Almeida, 2020, Controlled drug delivery system by fs-laser micromachined biocompatible rubber latex membranes, Appl. Surf. Sci., 506, 144762, 10.1016/j.apsusc.2019.144762 Cesar, 2020, Development and characterization of natural rubber latex and Polylactic acid membranes for biomedical application, J. Polym. Environ., 28, 220, 10.1007/s10924-019-01596-8 Krupp, 2019, Natural rubber - Propolis membrane improves wound healing in second-degree burning model, Int. J. Biol. Macromol., 131, 980, 10.1016/j.ijbiomac.2019.03.147 Hussain, 2017, Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: a review of new trends and future perspectives, Mater. Sci. Eng. C, 77, 1316, 10.1016/j.msec.2017.03.226 Chegeni, 2020, Synthesis and application of the calcium alginate/SWCNT-Gl as a bio-nanocomposite for the curcumin delivery, Int. J. Biol. Macromol., 156, 504, 10.1016/j.ijbiomac.2020.04.068 Tijing, 2016, Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation, J. Membr. Sci., 502, 158, 10.1016/j.memsci.2015.12.014 Rezaei, 2018, Encapsulation of curcumin using electrospun almond gum nanofibers: fabrication and characterization, Int. J. Food Prop., 21, 1608, 10.1080/10942912.2018.1503300 Mutlu, 2018, Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material, J. Drug Deliv. Sci. Technol., 43, 185, 10.1016/j.jddst.2017.09.017 Rasouli, 2020, Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of curcumin and Chrysin: possible application in prevention of breast cancer local recurrence, J. Drug Deliv. Sci. Technol., 55, 101402, 10.1016/j.jddst.2019.101402 Lopes, 2015, Synthesis of BiVO4via oxidant peroxo-method: insights into the photocatalytic performance and degradation mechanism of pollutants, New J. Chem., 39, 6231, 10.1039/C5NJ00984G Dadvar, 2011, UV-protection and photocatalytic properties of electrospun polyacrylonitrile nanofibrous mats coated with TiO2 nanofilm via sol-gel, J. Sol-Gel Sci. Technol., 59, 269, 10.1007/s10971-011-2495-7 N.C. for C.L.S.W.G. on A.S.T. of A. Bacteria, 1990 CLSI, 2004, Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard; informational supplement, Clin. Lab. Stand. Inst., 24, 1 Xu, 2020, Staphylococcus aureus impairs cutaneous wound healing by activating the expression of a gap junction protein, connexin-43 in keratinocytes, Cell. Mol. Life Sci. Demir, 2020, Presence of biofilm and adhesin genes in Staphylococcus aureus strains taken from chronic wound infections and their genotypic and phenotypic antimicrobial sensitivity patterns, Photodiagn. Photodyn. Ther., 29, 101584, 10.1016/j.pdpdt.2019.101584 Thet, 2016, Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms, ACS Appl. Mater. Interfaces, 8, 14909, 10.1021/acsami.5b07372 Gilotra, 2018, Potential of silk sericin based nanofibrous mats for wound dressing applications, Mater. Sci. Eng. C, 90, 420, 10.1016/j.msec.2018.04.077 Yuan, 2020, Novel and efficient curcumin based fluorescent polymer for scale and corrosion inhibition, Chem. Eng. J., 389, 124296, 10.1016/j.cej.2020.124296 Dhakal, 2019, Detection of additives and chemical contaminants in turmeric powder using FT-IR spectroscopy, Foods., 8, 143, 10.3390/foods8050143 Mamidi, 2018, High throughput fabrication of curcumin embedded gelatin-polylactic acid forcespun fiber-aligned scaffolds for the controlled release of curcumin, MRS Commun., 8, 1395, 10.1557/mrc.2018.193 Zhou, 2019, Transdermal delivery of curcumin-loaded supramolecular hydrogels for dermatitis treatment, J. Mater. Sci. Mater. Med., 30, 10.1007/s10856-018-6215-5 Lu, 1987, A vibrational spectroscopic analysis of the structure of natural rubber, Rubber Chem. Technol., 60, 647, 10.5254/1.3536148 Zancanela, 2019, Natural rubber latex membranes incorporated with three different types of propolis: physical-chemistry and antimicrobial behaviours, Mater. Sci. Eng. C, 97, 576, 10.1016/j.msec.2018.12.042 Morise, 2019, Scopolamine loaded in natural rubber latex as a future transdermal patch for sialorrhea treatment, Int. J. Polym. Mater. Polym. Biomater., 68, 788, 10.1080/00914037.2018.1506984 Xia, 2015, Study on flax fiber toughened poly (lactic acid) composites, J. Appl. Polym. Sci., 132, 1, 10.1002/app.42573 Wang, 2016, Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application, LWT Food Sci. Technol., 68, 454, 10.1016/j.lwt.2015.12.062 Pisani, 2018, Design of copolymer PLA-PCL electrospun matrix for biomedical applications, React. Funct. Polym., 124, 77, 10.1016/j.reactfunctpolym.2018.01.011 Scaffaro, 2018, Processing, structure, property relationships and release kinetics of electrospun PLA/Carvacrol membranes, Eur. Polym. J., 100, 165, 10.1016/j.eurpolymj.2018.01.035 Reddy, 2019, Mechanical, optical, thermal, and barrier properties of poly (Lactic Acid)/curcumin composite films Prepared using twin-screw extruder, Food Biophys, 14, 22, 10.1007/s11483-018-9553-4 Culmone, 2019, Additive manufacturing of medical instruments: a state-of-the-art review, Addit. Manuf., 27, 461 Sreedhar, 2006, Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin, J. Appl. Polym. Sci., 101, 25, 10.1002/app.23145 Sun, 2013, Electrospun curcumin-loaded fibers with potential biomedical applications, Carbohydr. Polym., 94, 147, 10.1016/j.carbpol.2012.12.064 Chen, 2014, Thermal degradation kinetics study of curcumin with nonlinear methods, Food Chem., 155, 81, 10.1016/j.foodchem.2014.01.034 Souguir, 2013, Nanoencapsulation of curcumin in polyurethane and polyurea shells by an emulsion diffusion method, Chem. Eng. J., 221, 133, 10.1016/j.cej.2013.01.069 Preem, 2019, Effects and efficacy of different sterilization and disinfection methods on electrospun drug delivery systems, Int. J. Pharm., 567, 118450, 10.1016/j.ijpharm.2019.118450 Horakova, 2020, Impact of various sterilization and disinfection techniques on electrospun poly-ε-caprolactone, ACS Omega., 5, 8885, 10.1021/acsomega.0c00503 Ramdhanie, 2006, Thermal and mechanical characterization of electrospun blends of poly(lactic acid) and poly(glycolic acid), Polym. J., 38, 1137, 10.1295/polymj.PJ2006062 Zong, 2002, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer (Guildf)., 43, 4403, 10.1016/S0032-3861(02)00275-6 Vazquez-Armendariz, 2020, Influence of controlled cooling on crystallinity of poly(L-Lactic acid) scaffolds after hydrolytic degradation, Materials (Basel)., 13, 1, 10.3390/ma13132943 Lu, 2002, Permeation of protein from porous poly(ε-caprolactone) films, J. Biomed. Mater. Res., 63, 220, 10.1002/jbm.10120 Atala, 2008 Perumal, 2017, Synthesis and characterization of curcumin loaded PLA—Hyperbranched polyglycerol electrospun blend for wound dressing applications, Mater. Sci. Eng. C, 76, 1196, 10.1016/j.msec.2017.03.200 Suryanegara, 2010, Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites, Cellulose., 17, 771, 10.1007/s10570-010-9419-5 Yadav, 2009, Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model, AAPS PharmSciTech, 10, 752, 10.1208/s12249-009-9264-8 Kasapoglu-Calik, 2019, Synthesis and controlled release of curcumin-β-cyclodextrin inclusion complex from nanocomposite poly(N-isopropylacrylamide/sodium alginate) hydrogels, J. Appl. Polym. Sci., 136, 1, 10.1002/app.47554 Gumireddy, 2019, Preparation, characterization, and in vitro evaluation of curcumin- and resveratrol-loaded solid lipid nanoparticles, AAPS PharmSciTech, 20, 10.1208/s12249-019-1349-4 Hussain, 2020, Hyaluronic acid functionalized nanoparticles for simultaneous delivery of curcumin and resveratrol for management of chronic diabetic wounds: fabrication, characterization, stability and in vitro release kinetics, J. Drug Deliv. Sci. Technol., 57, 101747, 10.1016/j.jddst.2020.101747 Huang, 2019, Surfactant-free solid dispersion of BCS class IV drug in an amorphous chitosan oligosaccharide matrix for concomitant dissolution in vitro - permeability increase, Eur. J. Pharm. Sci., 130, 147, 10.1016/j.ejps.2019.01.031 Liu, 1995, Miscibility and crystallization of semicrystalline nylon 6 and amorphous nylon 6IcoT blends, Polymer (Guildf)., 36, 4797, 10.1016/0032-3861(95)99295-6 Krishnamachari, 2009, Biodegradable poly(Lactic Acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties, Int. J. Polym. Anal. Charact., 14, 336, 10.1080/10236660902871843 Moradkhannejhad, 2020, The effect of molecular weight and content of PEG on in vitro drug release of electrospun curcumin loaded PLA/PEG nanofibers, J. Drug Deliv. Sci. Technol., 56, 101554, 10.1016/j.jddst.2020.101554 Rojas, 2020, Design of active electrospun mats with single and core-shell structures to achieve different curcumin release kinetics, J. Food Eng., 273, 10.1016/j.jfoodeng.2019.109900 Figueira, 2016, Production and characterization of polycaprolactone- hyaluronic acid/chitosan- zein electrospun bilayer nanofibrous membrane for tissue regeneration, Int. J. Biol. Macromol., 93, 1100, 10.1016/j.ijbiomac.2016.09.080 Oliveira, 2014, Cell interactions with superhydrophilic and superhydrophobic surfaces, J. Adhes. Sci. Technol., 28, 843, 10.1080/01694243.2012.697776 Miguel, 2019, Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications, Int. J. Biol. Macromol., 121, 524, 10.1016/j.ijbiomac.2018.10.041 Ranjbar-Mohammadi, 2016, Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application, Int. J. Biol. Macromol., 84, 448, 10.1016/j.ijbiomac.2015.12.024 Gandhimathi, 2014, Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration, Int. J. Nanomedicine, 9, 4709 Gutiérrez-Gutiérrez, 2020, Encapsulation of curcumin into layered double hydroxides improve their anticancer and antiparasitic activity, J. Pharm. Pharmacol., 1 Dadvar, 2011, UV-protection properties of electrospun polyacrylonitrile nanofibrous mats embedded with MgO and Al2O3 nanoparticles, J. Nanopart. Res., 13, 5163, 10.1007/s11051-011-0499-4 Lee, 2009, Developing UV-protective textiles based on electrospun zinc oxide nanocomposite fibers, Fibers Polym., 10, 295, 10.1007/s12221-009-0295-2 Mondal, 2016, Stability of curcumin in different solvent and solution media: UV–visible and steady-state fluorescence spectral study, J. Photochem. Photobiol. B Biol., 158, 212, 10.1016/j.jphotobiol.2016.03.004 Masek, 2013, Characteristics of curcumin using cyclic voltammetry, UV-vis, fluorescence and thermogravimetric analysis, Electrochim. Acta, 107, 441, 10.1016/j.electacta.2013.06.037 Griesser, 2011, Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin, J. Biol. Chem., 286, 1114, 10.1074/jbc.M110.178806 Del Castillo, 2015, Stabilization of curcumin against photodegradation by encapsulation in gamma-cyclodextrin: a study based on chromatographic and spectroscopic (Raman and UV-visible) data, Vib. Spectrosc., 81, 106, 10.1016/j.vibspec.2015.10.008 Tønnesen, 1985, Studies on curcumin and curcuminoids, Zeitschrift Für Leb. Und Forsch., 180, 402, 10.1007/BF01027775 Tønnesen, 2002, Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: Solubility, chemical and photochemical stability, Int. J. Pharm., 244, 127, 10.1016/S0378-5173(02)00323-X Wang, 1997, Stability of curcumin in buffer solutions and characterization of its degradation products, J. Pharm. Biomed. Anal., 15, 1867, 10.1016/S0731-7085(96)02024-9 Gordon, 2015, Unraveling curcumin degradation: autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione, J. Biol. Chem., 290, 4817, 10.1074/jbc.M114.618785 Gunes, 2016, Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study, Toxicol. Ind. Health, 32, 246, 10.1177/0748233713498458 Ippolito, 2010, Methicillin-resistant Staphylococcus aureus: the superbug, Int. J. Infect. Dis., 14, 7, 10.1016/j.ijid.2010.05.003 Adamczak, 2020, Curcumin, a natural antimicrobial agent with strain-specific activity, Pharmaceuticals., 13, 1, 10.3390/ph13070153 Wang, 2020, Effect of curcumin on the quality properties of millet fresh noodle and its inhibitory mechanism against the isolated spoilage bacteria, Food Sci. Nutr., 8, 1451, 10.1002/fsn3.1427 Cos, 2006, Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept,”, J. Ethnopharmacol., 106, 290, 10.1016/j.jep.2006.04.003 Wei, 2019, Large-scale and rapid preparation of Nanofibrous meshes and their application for drug-loaded multilayer Mucoadhesive patch fabrication for mouth ulcer treatment, ACS Appl. Mater. Interfaces, 10.1021/acsami.9b10379 Nguyen, 2011, The expanding scope of antimicrobial peptide structures and their modes of action, Trends Biotechnol., 29, 464, 10.1016/j.tibtech.2011.05.001 Takahashi, 2010, Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity, Biochimie., 92, 1236, 10.1016/j.biochi.2010.02.023 Zhao, 2020, Antibacterial hydrogel coating : strategies in surface chemistry, Adv. Colloid Interf. Sci., 285, 102280, 10.1016/j.cis.2020.102280 Xie, 2018, Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing, Int. J. Biol. Macromol., 107, 93, 10.1016/j.ijbiomac.2017.08.142 Abbaspour, 2015, Evaluation of the antimicrobial effect of chitosan/polyvinyl alcohol electrospun nanofibers containing mafenide acetate, Jundishapur J. Microbiol., 8, 10.5812/jjm.24239 Tang, 2019, Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging, J. Agric. Food Chem., 67, 2227, 10.1021/acs.jafc.8b06226