Big data for sustainable agri‐food supply chains: a review and future research perspectives
Tóm tắt
Research on agri-food supply chains (AFSCs) has attracted significant attention in recent years due to the challenges associated with sustainably feeding the global population. The purpose of this study is to review the potentials of big data for sustainable AFSCs. One hundred twenty-eight (128) journal articles were selected to identify how big data can contribute to the sustainable development of AFSCs. As part of our focus, a framework was developed based on the conceptualization of AFSCs in the extant literature to analyse big data research in the context of AFSCs and to provide insights into the potentials of the technology for agri-food businesses. The findings of the review indicate that there is a noticeable growth in the number of studies addressing the applications of big data for AFSCs. The potentials of big data for AFSC sustainability were synthesized in a summary framework, highlighting the primary resources and activities that are ready for improvement with big data. These include soil, water, crop and plant management, animal management, waste management and traceability management. The challenges of big data integration in AFSCs, the study’s implications, contributions, and the future research directions are highlighted in detail.
Tài liệu tham khảo
Ahumada O, Villalobos JR (2009) Application of planning models in the agri-food supply chain: A review. Eur J Oper Res 196:1–20. https://doi.org/10.1016/j.ejor.2008.02.014
Aljunid MF, Manjaiah DH (2019) Movie recommender system based on collaborative filtering using apache spark. In: Balas VE, Sharma N, Chakrabarti A (eds) Data Manag. Anal. Innov. Springer, Singapore, pp 283–295. https://doi.org/10.1007/978-981-13-1274-8_22
Aqueduct WRI (2019) World Resour. Inst. https://www.wri.org/aqueduct. Accessed 29 July 2020
Astill J, Dara RA, Fraser EDG, Roberts B, Sharif S (2020) Smart poultry management: Smart sensors, big data, and the internet of things. Comput Electron Agric 170. https://doi.org/10.1016/j.compag.2020.105291
Badia-Melis R, Mc Carthy U, Ruiz-Garcia L, Garcia-Hierro J, Villalba R (2018) New trends in cold chain monitoring applications - A review. Food Control 86:170–182. https://doi.org/10.1016/j.foodcont.2017.11.022
Bosona T, Gebresenbet G (2013) Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control 33:32–48. https://doi.org/10.1016/j.foodcont.2013.02.004
Cai Y, Zheng W, Zhang X, Zhangzhong L, Xue X (2019) Research on soil moisture prediction model based on deep learning. PLoS One 14. https://doi.org/10.1371/journal.pone.0214508
Camin F, Larcher R, Nicolini G, Bontempo L, Bertoldi D, Perini M, Schlicht C, Schellenberg A, Thomas F, Heinrich K, Voerkelius S, Horacek M, Ueckermann H, Froeschl H, Wimmer B, Heiss G, Baxter M, Rossmann A, Hoogewerff J (2010) Isotopic and elemental data for tracing the origin of European olive oils. J Agric Food Chem 58:570–577. https://doi.org/10.1021/jf902814s
Capmourteres V, Adams J, Berg A, Fraser E, Swanton C, Anand M (2018) Precision conservation meets precision agriculture: A case study from southern Ontario. Agric Syst 167:176–185. https://doi.org/10.1016/j.agsy.2018.09.011
Carbonell IM (2016) The ethics of big data in big agriculture. Internet Policy Rev 5. https://doi.org/10.14763/2016.1.405
Chapman R, Cook S, Donough C, Lim YL, Vun Vui Ho P, Lo KW, Oberthür T (2018) Using Bayesian networks to predict future yield functions with data from commercial oil palm plantations: A proof of concept analysis. Comput Electron Agric 151:338–348. https://doi.org/10.1016/j.compag.2018.06.006
Christopher M, Holweg M (2011) Supply Chain 2.0”: managing supply chains in the era of turbulence. Int J Phys Distrib Logist Manag 41:63–82. https://doi.org/10.1108/09600031111101439
Ciruela-Lorenzo AM, Del-Aguila-Obra AR, Padilla-Meléndez A, Plaza-Angulo JJ (2020) Digitalization of agri-cooperatives in the smart agriculture context. Proposal of a digital diagnosis tool. Sustain Switz 12. https://doi.org/10.3390/su12041325
Coble KH, Mishra AK, Ferrell S, Griffin T (2018) Big data in agriculture: A challenge for the future. Appl Econ Perspect Policy 40:79–96. https://doi.org/10.1093/aepp/ppx056
Costello C, Ovando D (2019) Status, institutions, and prospects for global capture fisheries. Annu Rev Environ Resour 44:177–200. https://doi.org/10.1146/annurev-environ-101718-033310
Coyle P (2016) Taking a bite into big data. Dataconomy. https://dataconomy.com/2016/02/taking-a-bite-into-big-data/. Accessed 18 June 2020
Cronin P, Ryan F, Coughlan M (2008) Undertaking a literature review: a step-by-step approach. Br J Nurs 17:38–43. https://doi.org/10.12968/bjon.2008.17.1.28059
Davenport TH (2014) How strategists use “big data” to support internal business decisions, discovery and production. Strategy Leadersh 42:45–50. https://doi.org/10.1108/SL-05-2014-0034
Delgado JA Jr, Short NM, Roberts DP, Vandenberg B (2019) Big data analysis for sustainable agriculture on a geospatial cloud framework. Front Sustain Food Syst 3. https://doi.org/10.3389/fsufs.2019.00054
Donohoe T, Garnett K, Lansink AO, Afonso A, Noteborn H, E.F.S. Authority (EFSA) (2018) Emerging risks identification on food and feed – EFSA. EFSA J 16. https://doi.org/10.2903/j.efsa.2018.5359
Dupaľ A, Richnák P, Szabo Ľ, Porubanová K (2019) Modern trends in logistics of agricultural enterprises. Agric Econ 65(2019):359–365. https://doi.org/10.17221/367/2018-AGRICECON
Eastwood C, Klerkx L, Ayre M, Dela Rue B (2019) Managing socio-ethical challenges in the development of smart farming: from a fragmented to a comprehensive approach for responsible research and innovation. J Agric Environ Ethics 32:741–768. https://doi.org/10.1007/s10806-017-9704-5
Eisler MC, Lee MRF, Tarlton JF, Martin GB, Beddington J, Dungait JAJ, Greathead H, Liu J, Mathew S, Miller H, Misselbrook T, Murray P, Vinod VK, Van Saun R, Winter M (2014) Agriculture: Steps to sustainable livestock. Nat News 507:32. https://doi.org/10.1038/507032a
Fernández-Getino AP, Alonso-Prados JL, Santín-Montanyá MI (2018) Challenges and prospects in connectivity analysis in agricultural systems: Actions to implement policies on land management and carbon storage at EU level. Land Use Policy 71:146–159. https://doi.org/10.1016/j.landusepol.2017.11.035
Finger R, Swinton SM, El Benni N, Walter A (2019) Precision farming at the nexus of agricultural production and the environment. Annu Rev Resour Econ 11:313–335. https://doi.org/10.1146/annurev-resource-100518-093929
Fleming A, Jakku E, Lim-Camacho L, Taylor B, Thorburn P (2018) Is big data for big farming or for everyone? Perceptions in the Australian grains industry. Agron Sustain Dev 38. https://doi.org/10.1007/s13593-018-0501-y
Forster-Carneiro T, Berni MD, Dorileo IL, Rostagno MA (2013) Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil. Resour Conserv Recycl 77:78–88. https://doi.org/10.1016/j.resconrec.2013.05.007
Garcia Martinez M, Briz J (2000) Innovation in the Spanish food & drink industry. Int Food Agribus Manag Rev 3:155–176. https://doi.org/10.1016/S1096-7508(00)00033-1
Garg R, Aggarwal H, Centobelli P, Cerchione R (2019) Extracting knowledge from big data for sustainability: A comparison of machine learning techniques. Sustain Switz 11. https://doi.org/10.3390/su11236669
Gašová M, Gašo M, Štefánik A (2017) Advanced industrial tools of ergonomics based on industry 4.0 concept. Procedia Eng 192:219–224. https://doi.org/10.1016/j.proeng.2017.06.038
George G, Haas MR, Pentland A (2014) Big data and management. Acad Manag J. https://doi.org/10.5465/amj.2014.4002
Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities., Tackling Clim. Change Livest. Glob. Assess. Emiss. Mitig. Oppor. https://www.cabdirect.org/cabdirect/abstract/20133417883. Accessed 22 June 2020
Giagnocavo C, Bienvenido F, Ming L, Yurong Z, Sanchez-Molina JA, Xinting Y (2017) Agricultural cooperatives and the role of organisational models in new intelligent traceability systems and big data analysis. Int J Agric Biol Eng 10:115–125. https://doi.org/10.25165/ijabe.v10i5.3089
Grunert KG (1997) What’s in a steak? A cross-cultural study on the quality perception of beef. Food Qual Prefer 8:157–174. https://doi.org/10.1016/S0950-3293(96)00038-9
Guo T, Wang Y (2019) Big data application issues in the agricultural modernization of china. Ekoloji 28:3677–3688. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063972060&partnerID=40&md5=9242c206ed052dc847c93fc8cf10ce2e. Accessed 30 July 2020
Halewood M, Chiurugwi T, Sackville Hamilton R, Kurtz B, Marden E, Welch E, Michiels F, Mozafari J, Sabran M, Patron N, Kersey P, Bastow R, Dorius S, Dias S, McCouch S, Powell W (2018) Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. New Phytol 217:1407–1419. https://doi.org/10.1111/nph.14993
He M, Sun Y, Zou D, Yuan H, Zhu B, Li X, Pang Y (2012) Influence of temperature on hydrolysis acidification of food waste. Procedia Environ Sci 16:85–94. https://doi.org/10.1016/j.proenv.2012.10.012
Hou D, Bolan NS, Tsang DCW, Kirkham MB, O’Connor D (2020) Sustainable soil use and management: An interdisciplinary and systematic approach. Sci Total Environ 729. https://doi.org/10.1016/j.scitotenv.2020.138961
Irani Z, Sharif AM, Lee H, Aktas E, Topaloğlu Z, van’t Wout T, Huda S (2018) Managing food security through food waste and loss: Small data to big data. Comput Oper Res 98:367–383. https://doi.org/10.1016/j.cor.2017.10.007
Jakku E, Taylor B, Fleming A, Mason C, Fielke S, Sounness C, Thorburn P (2019) “If they don’t tell us what they do with it, why would we trust them?” Trust, transparency and benefit-sharing in Smart Farming, NJAS - Wagening. J Life Sci :90–91. https://doi.org/10.1016/j.njas.2018.11.002
Jara-Rojas R, Bravo-Ureta BE, Engler A, Díaz J (2013) An analysis of the joint adoption of water conservation and soil conservation in Central Chile. Land Use Policy 32:292–301. https://doi.org/10.1016/j.landusepol.2012.11.001
Kamble SS, Gunasekaran A, Gawankar SA (2020) Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. Int J Prod Econ 219:179–194. https://doi.org/10.1016/j.ijpe.2019.05.022
Kamilaris A, Kartakoullis A, Prenafeta-Boldú FX (2017) A review on the practice of big data analysis in agriculture. Comput Electron Agric 143:23–37. https://doi.org/10.1016/j.compag.2017.09.037
Kamilaris A, Anton A, Blasi AB, Boldú FXP (2018) Assessing and mitigating the impact of livestock agriculture on the environment through geospatial and big data analysis. Int J Sustain Agric Manag Inform 4:98. https://doi.org/10.1504/IJSAMI.2018.094809
Kellengere Shankarnarayan V, Ramakrishna H (2020) Paradigm change in Indian agricultural practices using Big Data: Challenges and opportunities from field to plate. Inf Process Agric. https://doi.org/10.1016/j.inpa.2020.01.001
Khalil RAA, Johar F, Sabri S (2015) The impact of new-build gentrification in Iskandar Malaysia: a case study of Nusajaya. Procedia Soc Behav Sci 202:495–504. https://doi.org/10.1016/j.sbspro.2015.08.192
Khanna M, Swinton SM, Messer KD (2018) Sustaining our natural resources in the face of increasing societal demands on agriculture: directions for future research. Appl Econ Perspect Policy 40:38–59. https://doi.org/10.1093/aepp/ppx055
Klerkx L, Jakku E, Labarthe P (2019) A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda, NJAS - Wagening. J Life Sci :100315. https://doi.org/10.1016/j.njas.2019.100315
Kolipaka VRR (2020) Predictive analytics using cross media features in precision farming. Int J Speech Technol 23:57–69. https://doi.org/10.1007/s10772-020-09669-z
Li B (2019) Recommendation system of crop planting books based on big data. Rev Fac. Agron Univ Zulia 36. http://agronomiajournal.com/index.php/path/article/view/702. Accessed 29 July 2020
Li B, Ghose A, Ipeirotis PG (2011) Towards a theory model for product search. In: Proc. 20th Int. Conf. World Wide Web, ACM, New York, pp 327–336. https://doi.org/10.1145/1963405.1963453
Li J, Li X, Peng Y (2019) Application of big data in agricultural internet of things. Rev Fac Agron 36:1521–1529. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073269640&partnerID=40&md5=17165555014b0b7d5e3b60a2f691cf6e. Accessed 1 Sept 2020
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W–65
Lioutas ED, Charatsari C (2020) Big data in agriculture: Does the new oil lead to sustainability? Geoforum 109:1–3. https://doi.org/10.1016/j.geoforum.2019.12.019
Lioutas ED, Charatsari C, La Rocca G, De Rosa M (2019) Key questions on the use of big data in farming: An activity theory approach, NJAS - Wagening. J Life Sci :90–91. https://doi.org/10.1016/j.njas.2019.04.003
Liu B (2019) The “internet +” intelligent agricultural products circulation channel based on the fourth party logistics. Rev Fac Agron 36:1122–1132. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070781334&partnerID=40&md5=91fcad3293bcaabc106616fa98e0af65. Accessed 12 Sept 2020
Mardani A, Kannan D, Hooker RE, Ozkul S, Alrasheedi M, Tirkolaee EB (2020) Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research. J Clean Prod 249:119383. https://doi.org/10.1016/j.jclepro.2019.119383
Marques Vieira L, Dutra M, De Barcellos A, Hoppe S, Bitencourt da, Silva (2013) An analysis of value in an organic food supply chain. Br Food J 115:1454–1472. https://doi.org/10.1108/BFJ-06-2011-0160
Marvin HJP, Janssen EM, Bouzembrak Y, Hendriksen PJM, Staats M (2017) Big data in food safety: An overview. Crit Rev Food Sci Nutr 57:2286–2295. https://doi.org/10.1080/10408398.2016.1257481
Mishra N, Singh A (2018) Use of twitter data for waste minimisation in beef supply chain. Ann Oper Res 270:337–359. https://doi.org/10.1007/s10479-016-2303-4
Munz J, Gindele N, Doluschitz R (2020) Exploring the characteristics and utilisation of Farm Management Information Systems (FMIS) in Germany. Comput Electron Agric 170. https://doi.org/10.1016/j.compag.2020.105246
Opara LU, Mazaud F (2001) Food traceability from field to plate. Outlook Agric 30:239–247. https://doi.org/10.5367/000000001101293724
Orts E, Spigonardo J (2014) Sustainability in the age of big data. IGEL Wharton Univ., Philadelphia. 16
Östergren K, Davis J, Menna FD, Vittuari M, Unger N, Loubiere M (2017) Food supply chain side flows management through Life Cycle Assessment and Life Cycle Costing: a practitioner’s perspective. Proc Food Syst Dyn :300–303. https://doi.org/10.18461/pfsd.2017.1731
Otles S, Despoudi S, Bucatariu C, Kartal C (2015) Food waste management, valorization, and sustainability in the food industry. Food Waste Recovery. Elsevier, Amsterdam, pp 3–23
Pralle RS, White HM (2020) Symposium review: Big data, big predictions: Utilizing milk Fourier-transform infrared and genomics to improve hyperketonemia management. J Dairy Sci 103:3867–3873. https://doi.org/10.3168/jds.2019-17379
Rajeswari S, Suthendran K (2019) C5.0: Advanced Decision Tree (ADT) classification model for agricultural data analysis on cloud. Comput Electron Agric 156:530–539. https://doi.org/10.1016/j.compag.2018.12.013
Ramirez BC, Xin H, Halbur PG, Beermann DH, Hansen SL, Linhares DCL, Peschel JM, Rademacher CJ, Reecy JM, Ross JW, Shepherd TA, Koltes JE (2019) At the intersection of industry, academia, and government: How do we facilitate productive precision livestock farming in practice? Animals 9. https://doi.org/10.3390/ani9090635
Ramos-Rodríguez A-R, Ruíz‐Navarro J (2004) Changes in the intellectual structure of strategic management research: a bibliometric study of the Strategic Management Journal, 1980–2000. Strateg Manag J 25:981–1004. https://doi.org/10.1002/smj.397
Reynolds M, Kropff M, Crossa J, Koo J, Kruseman G, Molero Milan A, Rutkoski J, Schulthess U, Singh B, Sonder K, Tonnang H, Vadez V (2018) Role of modelling in international crop research: Overview and some case studies. Agronomy 8. https://doi.org/10.3390/agronomy8120291
Rotz S, Duncan E, Small M, Botschner J, Dara R, Mosby I, Reed M, Fraser EDG (2019) The politics of digital agricultural technologies: a preliminary review. Sociol Rural 59:203–229. https://doi.org/10.1111/soru.12233
Rowley J, Slack F (2004) Conducting a literature review. Manag Res News 27:31–39. https://doi.org/10.1108/01409170410784185
Rubens P (2014) Helping feed the world with big data, BBC News. https://www.bbc.com/news/business-26424338.. Accessed 28 July 2020
Ryan M (2020) Agricultural big data analytics and the ethics of power. J Agric Environ Ethics 33:49–69. https://doi.org/10.1007/s10806-019-09812-0
Saiz-Rubio V, Rovira-Más F (2020) From smart farming towards agriculture 5.0: A review on crop data management. Agronomy 10. https://doi.org/10.3390/agronomy10020207
Sarangi A, Madramootoo CA, Cox C (2004) A decision support system for soil and water conservation measures on agricultural watersheds. Land Degrad Dev 15:49–63. https://doi.org/10.1002/ldr.589
Sarkar MB, Butler B, Steinfield C (1995) Intermediaries and cybermediaries: Sarkar, butler and steinfield. J Comput-Mediat Commun 1:JCMC132
Serazetdinova L, Garratt J, Baylis A, Stergiadis S, Collison M, Davis S (2019) How should we turn data into decisions in AgriFood? J Sci Food Agric 99:3213–3219. https://doi.org/10.1002/jsfa.9545
Sethuraman MS 2012 Big data’s impact on the data supply chain. Cognizant, New Jersey
Sgarbossa F, Russo I (2017) A proactive model in sustainable food supply chain: Insight from a case study. Int J Prod Econ 183:596–606. https://doi.org/10.1016/j.ijpe.2016.07.022
Sharma R, Kamble SS, Gunasekaran A (2018) Big GIS analytics framework for agriculture supply chains: A literature review identifying the current trends and future perspectives. Comput Electron Agric 155:103–120. https://doi.org/10.1016/j.compag.2018.10.001
Sharma R, Kamble SS, Gunasekaran A, Kumar V, Kumar A (2020) A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput Oper Res 119. https://doi.org/10.1016/j.cor.2020.104926
Singh A, Kumari S, Malekpoor H, Mishra N (2018) Big data cloud computing framework for low carbon supplier selection in the beef supply chain. J Clean Prod 202:139–149. https://doi.org/10.1016/j.jclepro.2018.07.236
Skilton PF, Robinson JL (2009) Traceability and normal accident theory: how does supply network complexity influence the traceability of adverse events? J Supply Chain Manag 45:40–53. https://doi.org/10.1111/j.1745-493X.2009.03170.x
Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric Ecosyst Environ 118:6–28. https://doi.org/10.1016/j.agee.2006.06.006
Soto-Silva WE, Nadal-Roig E, González-Araya MC, Pla-Aragones LM (2016) Operational research models applied to the fresh fruit supply chain. Eur J Oper Res 251:345–355. https://doi.org/10.1016/j.ejor.2015.08.046
Steinfeld H, Gerber P, Wassenaar TD, F. and AO of the U Nations, Castel V, Rosales M, M MR, de Haan C 2006 Livestock’s long shadow: environmental issues and options. Food & Agriculture Org, Rome
Subudhi BN, Rout DK, Ghosh A (2019) Big data analytics for video surveillance. Multimed Tools Appl 78: 26129–26162. https://doi.org/10.1007/s11042-019-07793-w
Sun D-W (2014) Emerging technologies for food processing. Elsevier, Amsterdam
Tan B, Yin Y (2017) Environmental sustainability analysis and nutritional strategies of animal production in China. Annu Rev Anim Biosci 5:171–184. https://doi.org/10.1146/annurev-animal-022516-022935
Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 14:207–222. https://doi.org/10.1111/1467-8551.00375
van Evert FK, Fountas S, Jakovetic D, Crnojevic V, Travlos I, Kempenaar C (2017) Big Data for weed control and crop protection. Weed Res 57:218–233. https://doi.org/10.1111/wre.12255
Villa-Henriksen A, Edwards GTC, Pesonen LA, Green O, Sørensen CAG (2020) Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst Eng 191:60–84. https://doi.org/10.1016/j.biosystemseng.2019.12.013
Vlajic JV, van Lokven SWM, Haijema R, van der Vorst JGAJ (2013) Using vulnerability performance indicators to attain food supply chain robustness. Prod Plan Control 24:785–799. https://doi.org/10.1080/09537287.2012.666869
Wang S, Zhang C, Li D (2016) A big data centric integrated framework and typical system configurations for smart factory. In: Ind. IoT Technol. Appl., Springer, Cham pp 12–23. https://doi.org/10.1007/978-3-319-44350-8_2
Weersink A, Fraser E, Pannell D, Duncan E, Rotz S (2018) Opportunities and challenges for big data in agricultural and environmental analysis. Annu Rev Resour Econ 10:19–37. https://doi.org/10.1146/annurev-resource-100516-053654
Wiese MV (1982) Crop management by comprehensive appraisal of yield determining variables. Annu Rev Phytopathol 20:419–432
Wolfert S, Ge L, Verdouw C, Bogaardt M-J (2017) Big data in smart farming – a review. Agric Syst 153:69–80. https://doi.org/10.1016/j.agsy.2017.01.023
World Bank (2020) Agriculture and Food. World Bank. https://www.worldbank.org/en/topic/agriculture/overview.. Accessed 29 July 2020
Xia H, Houghton JA, Clark JH, Matharu AS (2016) Potential utilization of unavoidable food supply chain wastes–valorization of pea vine wastes. ACS Sustain Chem Eng 4:6002–6009. https://doi.org/10.1021/acssuschemeng.6b01297
Zhang Z, Huisingh D (2018) Combating desertification in China: Monitoring, control, management and revegetation. J Clean Prod 182:765–775. https://doi.org/10.1016/j.jclepro.2018.01.233