Phân tích dữ liệu lớn về các tương tác chức năng của não người dựa trên fMRI

Science China Press., Co. Ltd. - Tập 59 - Trang 5059-5065 - 2014
Xia Wu1,2,3, Lele Xu2, Li Yao1,2,3
1State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
2College of Information Science and Technology, Beijing Normal University, Beijing, China
3Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China

Tóm tắt

Não người là một hệ thống lớn và phức tạp tạo ra hoạt động não. Việc khám phá chức năng não người thông qua hình ảnh cộng hưởng từ chức năng (fMRI) là một phương pháp đầy hứa hẹn để hiểu hoạt động của não. Tuy nhiên, sự phức tạp của dữ liệu lớn được tạo ra bởi fMRI khiến việc phân tích các cấp độ khác nhau của hoạt động não người trở nên dễ dàng hơn, chẳng hạn như phân phối các biểu diễn thần kinh, sự tương tác giữa các vùng khác nhau và sự tương tác động theo thời gian. Những cấp độ khác nhau này có thể mô tả những triển vọng riêng biệt về hoạt động của não người, và những tiến bộ đáng kể đã được đạt được. Trong tương lai, nhiều phương pháp phân tích dữ liệu lớn kết hợp với những tiến bộ trong khoa học máy tính, bao gồm tính toán quy mô lớn hơn, học máy và lý thuyết đồ thị, sẽ thúc đẩy sự hiểu biết về não người.

Từ khóa

#não người #fMRI #dữ liệu lớn #hoạt động não #học máy #lý thuyết đồ thị

Tài liệu tham khảo

Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198 Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–S219 Sporns O, Chialvo DR, Kaiser M et al (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425 Supekar K, Uddin LQ, Prater K et al (2010) Development of functional and structural connectivity within the default mode network in young children. NeuroImage 52:290–301 Power JD, Cohen AL, Nelson SM et al (2011) Functional network organization of the human brain. Neuron 72:665–678 Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15:528–536 Turk-Browne NB (2013) Functional interactions as big data in the human brain. Science 342:580–584 Ogawa S, Lee TM, Kay AR et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872 Moeller S, Yacoub E, Olman CA et al (2010) Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magnet Reson Med 63:1144–1153 Feinberg DA, Yacoub E (2012) The rapid development of high speed, resolution and precision in fMRI. NeuroImage 62:720–725 Finney EM, Fine I, Dobkins KR (2001) Visual stimuli activate auditory cortex in the deaf. Nat Neurosci 4:1171–1173 Belin P, Zatorre RJ, Lafaille P et al (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312 Mechsner F, Kerzel D, Knoblich G et al (2001) Perceptual basis of bimanual coordination. Nature 414:69–73 Phillips ML, Young AW, Senior C et al (1997) A specific neural substrate for perceiving facial expressions of disgust. Nature 389:495–498 Lacourse MG, Orr EL, Cramer SC et al (2005) Brain activation during execution and motor imagery of novel and skilled sequential hand movements. NeuroImage 27:505–519 Holland SK, Plante E, Weber Byars A et al (2001) Normal fMRI brain activation patterns in children performing a verb generation task. NeuroImage 14:837–843 Phan KL, Wager T, Taylor SF et al (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 16:331–348 Johnson SC, Saykin AJ, Flashman LA et al (2001) Brain activation on fMRI and verbal memory ability: functional neuroanatomic correlates of CVLT performance. J Int Neuropsych Soc 7:55–62 Kanwisher N (2010) Functional specificity in the human brain: a window into the functional architecture of the mind. Proc Natl Acad Sci USA 107:11163–11170 Haxby JV, Gobbini MI, Furey ML et al (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430 Zhang H, Xu L, Wang S et al (2011) Behavioral improvements and brain functional alterations by motor imagery training. Brain Res 1407:38–46 Andersen AH, Gash DM, Avison MJ (1999) Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. Magn Reson Imaging 17:795–815 van de Ven VG, Formisano E, Prvulovic D et al (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22:165–178 Lazar N (2008) The statistical analysis of functional MRI data. Springer, Berlin Hu D, Yan L, Liu Y et al (2005) Unified SPM-ICA for fMRI analysis. NeuroImage 25:746–755 Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci 25:151–188 Wu X, Lu J, Chen K et al (2009) Multiple neural networks supporting a semantic task: an fMRI study using independent component analysis. NeuroImage 45:1347–1358 Vaadia E, Haalman I, Abeles M et al (1995) Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373:515–518 Cohen AL, Fair DA, Dosenbach NU et al (2008) Defining functional areas in individual human brains using resting functional connectivity MRI. NeuroImage 41:45–57 Cauda F, D’Agata F, Sacco K et al (2011) Functional connectivity of the insula in the resting brain. NeuroImage 55:8–23 Gusnard DA, Akbudak E, Shulman GL et al (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98:4259–4264 Shulman GL, Fiez JA, Corbetta M et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663 Mckiernan KA, Kaufman JN, Kucera-Thompson J et al (2003) A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15:394–408 Mazoyer B, Zago L, Mellet E et al (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54:287–298 Maddock RJ (1999) The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends Neurosci 22:310–316 Shannon BJ, Buckner RL (2004) Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex. J Neurosci 24:10084–10092 Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678 Smith SM (2012) The future of FMRI connectivity. NeuroImage 62:1257–1266 Zeng L, Wang D, Fox MD et al (2014) Neurobiological basis of head motion in brain imaging. Proc Natl Acad Sci USA 111:6058–6062 Zheng X, Rajapakse JC (2006) Learning functional structure from fMR images. NeuroImage 31:1601–1613 Goebel R, Roebroeck A, Kim D et al (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 21:1251–1261 Mclntosh AR, Gonzalez Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:2–22 Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273–1302 Miao X, Wu X, Li R et al (2011) Altered connectivity pattern of hubs in default-mode network with Alzheimer’s disease: an Granger causality modeling approach. PLoS One 6:e25546 Wu X, Li R, Fleisher AS et al (2011) Altered default mode network connectivity in Alzheimer’s disease—a resting functional MRI and Bayesian network study. Hum Brain Mapp 32:1868–1881 Li R, Yu J, Zhang S et al (2013) Bayesian network analysis reveals alterations to default mode network connectivity in individuals at risk for Alzheimer’s disease. PLoS One 8:e82104 Li R, Chen K, Fleisher AS et al (2011) Large-scale directional connections among multi resting-state neural networks in human brain: a functional MRI and Bayesian network modeling study. NeuroImage 56:1035–1042 Murphy KP (2002) Dynamic bayesian networks: representation, inference and learning. University of California, Berkeley Cox RW, Jesmanowicz A, Hyde JS (1995) Real-Time functional magnetic resonance imaging. Magnet Reson Med 33:230–236 Ma X, Zhang H, Zhao X et al (2012) Semi-blind independent component analysis of fMRI based on real-time fMRI system. IEEE Trans Neural Syst Rehabil Eng 21:416–426 Guo H, Hsu W (2002). A survey of algorithms for real-time Bayesian network inference. AAAI/KDD/UAI02 Joint Workshop on Real-Time Decision Support and Diagnosis Systems. Edmonton, Canada Rajapakse JC, Zhou J (2007) Learning effective brain connectivity with dynamic Bayesian networks. NeuroImage 37:749–760 Wu X, Wen X, Li J et al (2014) A new dynamic Bayesian network approach for determining effective connectivity from fMRI data. Neural Comput Appl 24:91–97 Caria A, Sitaram R, Birbaumer N (2012) Real-Time fMRI a tool for local brain regulation. Neurosci 18:487–501 Zhang G, Yao L, Zhang H et al (2013) Improved working memory performance through Self-Regulation of dorsal lateral prefrontal cortex activation using Real-Time fMRI. PLoS One 8:e73735 Esposito F, Seifritz E, Formisano E et al (2003) Real-time independent component analysis of fMRI time-series. NeuroImage 20:2209–2224 Liu Y, Gao J, Liotti M et al (1999) Temporal dissociation of parallel processing in the human subcortical outputs. Nature 400:364–367 Büchel C, Friston K (2000) Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw 13:871–882 Xu L, Zhang H, Hui M et al (2013) Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory. Neuroscience 261:184–194 Zhang H, Xu L, Zhang R et al (2012) Parallel alterations of functional connectivity during execution and imagination after motor imagery learning. PLoS One 7:e36052 Buckner RL, Sepulcre J, Talukdar T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873 Sepulcre J, Liu H, Talukdar T et al (2010) The organization of local and distant functional connectivity in the human brain. PLoS Comput Biol 6:e1000808 Tomasi D, Volkow ND (2010) Functional connectivity density mapping. Proc Natl Acad Sci USA 107:9885–9890 Lohmann G, Margulies DS, Horstmann A et al (2010) Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One 5:e10232 Giedd JN (2004) Structural magnetic resonance imaging of the adolescent brain. Ann Ny Acad Sci 1021:77–85 Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539 Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology 1. Radiology 231:305–332 Sacher J, Neumann J, Fünfstück T et al (2012) Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disorders 140:142–148