Big Data: A Survey
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gantz J, Reinsel D (2011) Extracting value from chaos. IDC iView, pp 1–12
Fact sheet: Big data across the federal government (2012). http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sheet_3_29_2012.pdf
Cukier K (2010) Data, data everywhere: a special report on managing information. Economist Newspaper
Drowning in numbers - digital data will flood the planet- and help us understand it better (2011). http://www.economist.com/blogs/dailychart/2011/11/bigdata-0
Lohr S (2012) The age of big data. New York Times, pp 11
Yuki N (2011) Following digital breadcrumbs to big data gold. http://www.npr.org/2011/11/29/142521910/thedigitalbreadcrumbs-that-lead-to-big-data
Yuki NThe search for analysts to make sense of big data (2011). http://www.npr.org/2011/11/30/142893065/the-searchforanalysts-to-make-sense-of-big-data
Big data (2008). http://www.nature.com/news/specials/bigdata/index.html
Special online collection: dealing with big data (2011). http://www.sciencemag.org/site/special/data/
Manyika J, McKinsey Global Institute, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH (2011) Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute
Mayer-Schönberger V, Cukier K (2013) Big data: a revolution that will transform how we live, work, and think. Eamon Dolan/Houghton Mifflin Harcourt
Laney D (2001) 3-d data management: controlling data volume, velocity and variety. META Group Research Note, 6 February
Zikopoulos P, Eaton C, et al (2011) Understanding big data: analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media
Beyer M (2011) Gartner says solving big data challenge involves more than just managing volumes of data. Gartner. http://www.gartner.com/it/page.jsp
O. R. Team (2011) Big data now: current perspectives from OReilly Radar. OReilly Media
Grobelnik M (2012) Big data tutorial. http://videolectures.net/eswc2012grobelnikbigdata/
Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L (2008) Detecting influenza epidemics using search engine query data. Nature 457(7232):1012–1014
DeWitt D, Gray J (1992) Parallel database systems: the future of high performance database systems. Commun ACM 35(6):85–98
Walter T (2009) Teradata past, present, and future. UCI ISG lecture series on scalable data management
Ghemawat S, Gobioff H, Leung S-T (2003) The google file system. In: ACM SIGOPS Operating Systems Review, vol 37. ACM, pp 29–43
Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113
Hey AJG, Tansley S, Tolle KM, et al (2009) The fourth paradigm: data-intensive scientific discovery
Howard JH, Kazar ML, Menees SG, Nichols DA, Satyanarayanan M, Sidebotham RN, West MJ (1988) Scale and performance in a distributed file system. ACM Trans Comput Syst (TOCS) 6(1):51–81
Labrinidis A, Jagadish HV (2012) Challenges and opportunities with big data. Proc VLDB Endowment 5(12):2032–2033
Chaudhuri S, Dayal U, Narasayya V (2011) An overview of business intelligence technology. Commun ACM 54(8):88–98
Agrawal D, Bernstein P, Bertino E, Davidson S, Dayal U, Franklin M, Gehrke J, Haas L, Halevy A, Han J et al (2012) Challenges and opportunities with big data. A community white paper developed by leading researches across the United States
Sun Y, Chen M, Liu B, Mao S (2013) Far: a fault-avoidant routing method for data center networks with regular topology. In: Proceedings of ACM/IEEE symposium on architectures for networking and communications systems (ANCS’13). ACM
Wiki (2013). Applications and organizations using hadoop. http://wiki.apache.org/hadoop/PoweredBy
Bahga A, Madisetti VK (2012) Analyzing massive machine maintenance data in a computing cloud. IEEE Transac Parallel Distrib Syst 23(10):1831–1843
Gunarathne T, Wu T-L, Choi JY, Bae S-H, Qiu J (2011) Cloud computing paradigms for pleasingly parallel biomedical applications. Concurr Comput Prac Experience 23(17):2338–2354
Gantz J, Reinsel D (2010) The digital universe decade-are you ready. External publication of IDC (Analyse the Future) information and data, pp 1–16
Bryant RE (2011) Data-intensive scalable computing for scientific applications. Comput Sci Eng 13(6):25–33
Wahab MHA, Mohd MNH, Hanafi HF, Mohsin MFM (2008) Data pre-processing on web server logs for generalized association rules mining algorithm. World Acad Sci Eng Technol 48:2008
Nanopoulos A, Manolopoulos Y, Zakrzewicz M, Morzy T (2002) Indexing web access-logs for pattern queries. In: Proceedings of the 4th international workshop on web information and data management. ACM, pp 63–68
Joshi KP, Joshi A, Yesha Y (2003) On using a warehouse to analyze web logs. Distrib Parallel Databases 13(2):161–180
Chandramohan V, Christensen K (2002) A first look at wired sensor networks for video surveillance systems. In: Proceedings LCN 2002, 27th annual IEEE conference on local computer networks. IEEE, pp 728–729
Selavo L, Wood A, Cao Q, Sookoor T, Liu H, Srinivasan A, Wu Y, Kang W, Stankovic J, Young D et al (2007) Luster: wireless sensor network for environmental research. In: Proceedings of the 5th international conference on Embedded networked sensor systems. ACM, pp 103–116
Barrenetxea G, Ingelrest F, Schaefer G, Vetterli M, Couach O, Parlange M (2008) Sensorscope: out-of-the-box environmental monitoring. In: Information processing in sensor networks, 2008, international conference on IPSN’08. IEEE, pp 332– 343
Kim Y, Schmid T, Charbiwala ZM, Friedman J, Srivastava MB (2008) Nawms: nonintrusive autonomous water monitoring system. In: Proceedings of the 6th ACM conference on Embedded network sensor systems. ACM, pp 309–322
Kim S, Pakzad S, Culler D, Demmel J, Fenves G, Glaser S, Turon M (2007) Health monitoring of civil infrastructures using wireless sensor networks. In Information Processing in Sensor Networks 2007, 6th International Symposium on IPSN 2007. IEEE, pp 254–263
Ceriotti M, Mottola L, Picco GP, Murphy AL, Guna S, Corra M, Pozzi M, Zonta D, Zanon P (2009) Monitoring heritage buildings with wireless sensor networks: the torre aquila deployment. In: Proceedings of the 2009 International Conference on Information Processing in Sensor Networks. IEEE Computer Society, pp 277–288
Tolle G, Polastre J, Szewczyk R, Culler D, Turner N, Tu K, Burgess S, Dawson T, Buonadonna P, Gay D et al (2005) A macroscope in the redwoods. In: Proceedings of the 3rd international conference on embedded networked sensor systems. ACM, pp 51–63
Wang F, Liu J (2011) Networked wireless sensor data collection: issues, challenges, and approaches. IEEE Commun Surv Tutor 13(4):673–687
Cho J, Garcia-Molina H (2002) Parallel crawlers. In: Proceedings of the 11th international conference on World Wide Web. ACM, pp 124–135
Choudhary S, Dincturk ME, Mirtaheri SM, Moosavi A, von Bochmann G, Jourdan G-V, Onut I-V (2012) Crawling rich internet applications: the state of the art. In: CASCON. pp 146–160
Jinno M, Takara H, Kozicki B (2009) Dynamic optical mesh networks: drivers, challenges and solutions for the future. In: Optical communication, 2009, 35th European conference on ECOC’09. IEEE, pp 1–4
Barroso LA, Hölzle U (2009) The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synt Lect Comput Archit 4(1):1–108
Cisco data center interconnect design and deployment guide (2010)
Greenberg A, Hamilton JR, Jain N, Kandula S, Kim C, Lahiri P, Maltz DA, Patel P, Sengupta S (2009) Vl2: a scalable and flexible data center network. In ACM SIGCOMM computer communication review, vol 39. ACM, pp 51–62
Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S (2009) Bcube: a high performance, server-centric network architecture for modular data centers. ACM SIGCOMM Comput Commun Rev 39(4):63–74
Farrington N, Porter G, Radhakrishnan S, Bazzaz HH, Subramanya V, Fainman Y, Papen G, Vahdat A (2011) Helios: a hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM Comput Commun Rev 41(4):339–350
Abu-Libdeh H, Costa P, Rowstron A, O’Shea G, Donnelly A (2010) Symbiotic routing in future data centers. ACM SIGCOMM Comput Commun Rev 40(4):51–62
Lam C, Liu H, Koley B, Zhao X, Kamalov V, Gill V, Fiber optic communication technologies: what’s needed for datacenter network operations (2010). IEEE Commun Mag 48(7):32–39
Wang G, Andersen DG, Kaminsky M, Papagiannaki K, Ng TS, Kozuch M, Ryan M (2010) c-through: Part-time optics in data centers. In: ACM SIGCOMM Computer Communication Review, vol 40. ACM, pp 327–338
Ye X, Yin Y, Yoo SJB, Mejia P, Proietti R, Akella V (2010) Dos: a scalable optical switch for datacenters. In Proceedings of the 6th ACM/IEEE symposium on architectures for networking and communications systems. ACM, p 24
Singla A, Singh A, Ramachandran K, Xu L, Zhang Y (2010) Proteus: a topology malleable data center network. In Proceedings of the 9th ACM SIGCOMM workshop on hot topics in networks. ACM, p 8
Liboiron-Ladouceur O, Cerutti I, Raponi PG, Andriolli N, Castoldi P (2011) Energy-efficient design of a scalable optical multiplane interconnection architecture. IEEE J Sel Top Quantum Electron 17(2):377–383
Kodi AK, Louri A (2011) Energy-efficient and bandwidth-reconfigurable photonic networks for high-performance computing (hpc) systems. IEEE J Sel Top Quantum Electron 17(2):384–395
Zhou X, Zhang Z, Zhu Y, Li Y, Kumar S, Vahdat A, Zhao BY, Zheng H (2012) Mirror mirror on the ceiling: flexible wireless links for data centers. ACM SIGCOMM Comput Commun Rev 42(4):443–454
Lenzerini M (2002) Data integration: a theoretical perspective. In: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems. ACM, pp 233–246
Cafarella MJ, Halevy A, Khoussainova N (2009) Data integration for the relational web. Proc VLDB Endowment 2(1):1090–1101
Maletic JI, Marcus A (2000) Data cleansing: beyond integrity analysis. In: IQ. Citeseer, pp 200–209
Kohavi R, Mason L, Parekh R, Zheng Z (2004) Lessons and challenges from mining retail e-commerce data. Mach Learn 57(1-2):83–113
Chen H, Ku W-S, Wang H, Sun M-T (2010) Leveraging spatio-temporal redundancy for rfid data cleansing. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data. ACM, pp 51–62
Zhao Z, Ng W (2012) A model-based approach for rfid data stream cleansing. In Proceedings of the 21st ACM international conference on information and knowledge management. ACM, pp 862–871
Khoussainova N, Balazinska M, Suciu D (2008) Probabilistic event extraction from rfid data. In: Data Engineering, 2008. IEEE 24th international conference on ICDE 2008. IEEE, pp 1480–1482
Tsai T-H, Lin C-Y (2012) Exploring contextual redundancy in improving object-based video coding for video sensor networks surveillance. IEEE Transac Multmed 14(3):669–682
Sarawagi S, Bhamidipaty A (2002) Interactive deduplication using active learning. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 269–278
Kamath U, Compton J, Dogan RI, Jong KD, Shehu A (2012) An evolutionary algorithm approach for feature generation from sequence data and its application to dna splice site prediction. IEEE/ACM Transac Comput Biol Bioinforma (TCBB) 9(5):1387–1398
Leung K-S, Lee KH, Wang J-F, Ng EYT, Chan HLY, Tsui SKW, Mok TSK, Tse PC-H, Sung JJ-Y (2011) Data mining on dna sequences of hepatitis b virus. IEEE/ACM Transac Comput Biol Bioinforma 8(2):428–440
Huang Z, Shen H, Liu J, Zhou X (2011) Effective data co-reduction for multimedia similarity search. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. ACM, pp 1021–1032
Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News 33(2):51–59
Chaiken R, Jenkins B, Larson P-Å, Ramsey B, Shakib D, Weaver S, Zhou J (2008) Scope: easy and efficient parallel processing of massive data sets. Proc VLDB Endowment 1(2):1265–1276
Beaver D, Kumar S, Li HC, Sobel J, Vajgel P et al (2010) Finding a needle in haystack: facebook’s photo storage. In OSDI, vol 10. pp 1–8
DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: amazon’s highly available key-value store. In: SOSP, vol 7. pp 205–220
Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D (1997) Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the world wide web. In: Proceedings of the twenty-ninth annual ACM symposium on theory of computing. ACM, pp 654–663
Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst (TOCS) 26(2):4
Burrows M (2006) The chubby lock service for loosely-coupled distributed systems. In: Proceedings of the 7th symposium on Operating systems design and implementation. USENIX Association, pp 335–350
Lakshman A, Malik P (2009) Cassandra: structured storage system on a p2p network. In: Proceedings of the 28th ACM symposium on principles of distributed computing. ACM, pp 5–5
George L (2011) HBase: the definitive guide. O’Reilly Media Inc
Judd D (2008) hypertable-0.9. 0.4-alpha
Chodorow K (2013) MongoDB: the definitive guide. O’Reilly Media Inc
Murty J (2009) Programming amazon web services: S3, EC2, SQS, FPS, and SimpleDB. O’Reilly Media Inc
Anderson JC, Lehnardt J, Slater N (2010) CouchDB: the definitive guide. O’Reilly Media Inc
Blanas S, Patel JM, Ercegovac V, Rao J, Shekita EJ, Tian Y (2010) A comparison of join algorithms for log processing in mapreduce. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data. ACM, pp 975–986
Yang H-C, Parker DS (2009) Traverse: simplified indexing on large map-reduce-merge clusters. In: Database systems for advanced applications. Springer, pp 308–322
Pike R, Dorward S, Griesemer R, Quinlan S (2005) Interpreting the data: parallel analysis with sawzall. Sci Program 13(4):277–298
Gates AF, Natkovich O, Chopra S, Kamath P, Narayanamurthy SM, Olston C, Reed B, Srinivasan S, Srivastava U (2009) Building a high-level dataflow system on top of map-reduce: the pig experience. Proceedings VLDB Endowment 2(2):1414–1425
Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R (2009) Hive: a warehousing solution over a map-reduce framework. Proc VLDB Endowment 2(2):1626–1629
Isard M, Budiu M, Yu Y, Birrell A, Fetterly D (2007) Dryad: distributed data-parallel programs from sequential building blocks. ACM SIGOPS Oper Syst Rev 41(3):59–72
Yu Y, Isard M, Fetterly D, Budiu M, Erlingsson Ú, Gunda PK, Currey J (2008) Dryadlinq: a system for general-purpose distributed data-parallel computing using a high-level language. In: OSDI, vol 8. pp 1–14
Moretti C, Bulosan J, Thain D, Flynn PJ (2008) All-pairs: an abstraction for data-intensive cloud computing. In: Parallel and distributed processing, 2008. IEEE international symposium on IPDPS 2008. IEEE, pp 1–11
Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data. ACM, pp 135–146
Bu Y, Bill H, Balazinska M, Ernst MD (2010) Haloop: efficient iterative data processing on large clusters. Proc VLDB Endowment 3(1-2):285–296
Ekanayake J, Li H, Zhang B, Gunarathne T, Bae S-H, Qiu J, Fox G (2010) Twister: a runtime for iterative mapreduce. In Proceedings of the 19th ACM international symposium on high performance distributed computing. ACM, pp 810–818
Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin M, Shenker S, Stoica I (2012) Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on networked systems design and implementation. USENIX Association, pp 2–2
Bhatotia P, Wieder A, Rodrigues R, Acar UA, Pasquin R (2011) Incoop: mapreduce for incremental computations. In: Proceedings of the 2nd ACM symposium on cloud computing. ACM, p 7
Murray DG, Schwarzkopf M, Smowton C, Smith S, Madhavapeddy A, Hand S (2011) Ciel: a universal execution engine for distributed data-flow computing. In: Proceedings of the 8th USENIX conference on Networked systems design and implementation. p 9
Anderson TW (1958) An introduction to multivariate statistical analysis, vol 2. Wiley, New York
Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Philip SY et al (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37
What analytics data mining, big data software you used in the past 12 months for a real project? (2012) http://www.kdnuggets.com/polls/2012/analytics-data-mining-big-data-software.html
Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2008) KNIME: the Konstanz information miner. Springer
Sallam RL, Richardson J, Hagerty J, Hostmann B (2011) Magic quadrant for business intelligence platforms. CT, Gartner Group, Stamford
Beyond the PC. Special Report on Personal Technology (2011)
Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, Matasci N, Wang L, Hanlon M, Lenards A et al (2011) The iplant collaborative: cyberinfrastructure for plant biology. Front Plant Sci 34(2):1–16. doi: 10.3389/fpls.2011.00034
Baah GK, Gray A, Harrold MJ (2006) On-line anomaly detection of deployed software: a statistical machine learning approach. In: Proceedings of the 3rd international workshop on Software quality assurance. ACM, pp 70–77
Moeng M, Melhem R (2010) Applying statistical machine learning to multicore voltage & frequency scaling. In: Proceedings of the 7th ACM international conference on computing frontiers. ACM, pp 277–286
Gaber MM, Zaslavsky A, Krishnaswamy S (2005) Mining data streams: a review. ACM Sigmod Record 34(2):18–26
Verykios VS, Bertino E, Fovino IN, Provenza LP, Saygin Y, Theodoridis Y (2004) State-of-the-art in privacy preserving data mining. ACM Sigmod Record 33(1):50–57
van der Aalst W (2012) Process mining: overview and opportunities. ACM Transac Manag Inform Syst (TMIS) 3(2):7
Manning CD, Schütze H (1999) Foundations of statistical natural language processing, vol 999. MIT Press
Pal SK, Talwar V, Mitra P (2002) Web mining in soft computing framework, relevance, state of the art and future directions. IEEE Transac Neural Netw 13(5):1163–1177
Chakrabarti S (2000) Data mining for hypertext: a tutorial survey. ACM SIGKDD Explor Newsl 1(2):1–11
Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30(1):107–117
Konopnicki D, Shmueli O (1995) W3qs: a query system for the world-wide web. In: VLDB, vol 95. pp 54–65
Chakrabarti S, Van den Berg M, Dom B (1999) Focused crawling: a new approach to topic-specific web resource discovery. Comput Netw 31(11):1623–1640
Ding D, Metze F, Rawat S, Schulam PF, Burger S, Younessian E, Bao L, Christel MG, Hauptmann A (2012) Beyond audio and video retrieval: towards multimedia summarization. In: Proceedings of the 2nd ACM international conference on multimedia retrieval. ACM, pp 2
Wang M, Ni B, Hua X-S, Chua T-S (2012) Assistive tagging: a survey of multimedia tagging with human-computer joint exploration. ACM Comput Surv (CSUR) 44(4):25
Lew MS, Sebe N, Djeraba C, Jain R (2006) Content-based multimedia information retrieval: state of the art and challenges. ACM Trans Multimed Comput Commun Appl (TOMCCAP) 2(1):1–19
Hu W, Xie N, Li L, Zeng X, Maybank S (2011) A survey on visual content-based video indexing and retrieval. IEEE Trans Syst Man Cybern Part C Appl Rev 41(6):797–819
Park Y-J, Chang K-N (2009) Individual and group behavior-based customer profile model for personalized product recommendation. Expert Syst Appl 36(2):1932–1939
Barragáns-Martínez AB, Costa-Montenegro E, Burguillo JC, Rey-López M, Mikic-Fonte FA, Peleteiro A (2010) A hybrid content-based and item-based collaborative filtering approach to recommend tv programs enhanced with singular value decomposition. Inf Sci 180(22):4290–4311
Naphade M, Smith JR, Tesic J, Chang S-F, Hsu W, Kennedy L, Hauptmann A, Curtis J (2006) Large-scale concept ontology for multimedia. IEEE Multimedia 13(3):86–91
Ma Z, Yang Y, Cai Y, Sebe N, Hauptmann AG (2012) Knowledge adaptation for ad hoc multimedia event detection with few exemplars. In: Proceedings of the 20th ACM international conference on multimedia. ACM, pp 469–478
Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA 102(46):16569
Watts DJ (2004) Six degrees: the science of a connected age. WW Norton & Company
Scellato S, Noulas A, Mascolo C (2011) Exploiting place features in link prediction on location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 1046–1054
Ninagawa A, Eguchi K (2010) Link prediction using probabilistic group models of network structure. In: Proceedings of the 2010 ACM symposium on applied Computing. ACM, pp 1115–1116
Dunlavy DM, Kolda TG, Acar E (2011) Temporal link prediction using matrix and tensor factorizations. ACM Transac Knowl Discov Data (TKDD) 5(2):10
Leskovec J, Lang KJ, Mahoney M (2010) Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th international conference on World wide web. ACM, pp 631–640
Du N, Wu B, Pei X, Wang B, Xu L (2007) Community detection in large-scale social networks. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis. ACM, pp 16–25
Garg S, Gupta T, Carlsson N, Mahanti A (2009) Evolution of an online social aggregation network: an empirical study. In: Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference. ACM, pp 315–321
Allamanis M, Scellato S, Mascolo C (2012) Evolution of a location-based online social network: analysis and models. In: Proceedings of the 2012 ACM conference on Internet measurement conference. ACM, pp 145–158
Gong NZ, Xu W, Huang L, Mittal P, Stefanov E, Sekar V, Song D (2012) Evolution of social-attribute networks: measurements, modeling, and implications using google+. In: Proceedings of the 2012 ACM conference on Internet measurement conference. ACM, pp 131–144
Zheleva E, Sharara H, Getoor L (2009) Co-evolution of social and affiliation networks. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 1007–1016
Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 807–816
Li Y, Chen W, Wang Y, Zhang Z-L (2013) Influence diffusion dynamics and influence maximization in social networks with friend and foe relationships. In Proceedings of the sixth ACM international conference on Web search and data mining. ACM, pp 657–666
Dai W, Chen Y, Xue G-R, Yang Q, Yu Y (2008) Translated learning: transfer learning across different feature spaces: In: Advances in neural information processing systems. pp 353–360
Cisco Visual Networking Index (2013) Global mobile data traffic forecast update, 2012–2017 http://www.cisco.com/en.US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html (Son erişim: 5 Mayıs 2013)
Rhee Y, Lee J (2009) On modeling a model of mobile community: designing user interfaces to support group interaction. Interactions 16(6):46–51
Han J, Lee J-G, Gonzalez H, Li X (2008) Mining massive rfid, trajectory, and traffic data sets. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, p 2
Garg MK, Kim D-J, Turaga DS, Prabhakaran B (2010) Multimodal analysis of body sensor network data streams for real-time healthcare. In: Proceedings of the international conference on multimedia information retrieval. ACM, pp 469–478
Park Y, Ghosh J (2012) A probabilistic imputation framework for predictive analysis using variably aggregated, multi-source healthcare data. In: Proceedings of the 2nd ACM SIGHIT international health informatics symposium. ACM, pp 445–454
Tasevski P (2011) Password attacks and generation strategies. Tartu University: Faculty of Mathematics and Computer Sciences