Bifurcations of Periodic Solutions of a Hamiltonian System with a Discrete Symmetry Group
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barrio, R. and Blesa, F., Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems, Chaos, Solitons Fractals, 2009, vol. 41, no 2, pp. 560–582.
Jorba, A. and Zou, M., A software package for the numerical integration of ODE by means of high order Taylor methods, Preprint, 2004, p. 32.
Abad, A., Barrio, R., Blesa, F., and Rodríguez, M., Algorithm 924: TIDES, a Taylor series integrator for differential equations, ACM Trans. Math. Software, 2012. vol. 39, no. 1, Article No. 5.
Meurer, A, Smith, C.P., Paprocki, M., et al., SymPy: Symbolic computing in Python, Peer J. Comput. Sci., 2017, vol. 3, p. e103. https://doi.org/10.7717/peerjcs.103
Wolfram, S., The Mathematica Book, Wolfram Media, Inc., 2003.
Batkhin, A.B., Some properties of doubly symmetric periodic solutions to Hamiltonian system, Int. Conf. on Polynomial Computer Algebra, St. Petersburg, 2019, Vassiliev, N.N., Ed., St. Petersburg: Euler International Mathematical Institute., 2019, pp. 25–28.
Batkhin, A.B., Bifurcations of periodic solutions to the Hamilton system with discrete symmetries, Proc. of the Int. Conf. on Computer Algebra, Moscow, 2019, Abramov, S.A. and Sevast’yanov, L.A., Eds., Moscow: Ross. Univ. Druzhby Narodov, 2019, pp. 90–97.
Batkhin, A.B., On the structure of phase flow in the neighborhood of the symmetric periodic solution of the Hamilton system, Preprint of the Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2019, no. 69.
Lamb, J.S.W. and Roberts, J.A.G. Time-reversal symmetry in dynamical systems: A survey, Physica D, 1998, vol. 112, pp. 1–39.
Meyer, K.R., Periodic Solutions of the N-body Problem, Lecture Notes in Mathematics, vol. 1719, Berlin: Springer, 1999.
Hénon, M., Generating Families in the Restricted Three-Body Problem, Lecture Note in Physics, Monograph no. 52, Berlin: Springer, 1997.
Wintner, A. The Analytical Foundations of Celestial Mechanics, Princeton N.J.: Princeton Univ. Press, 1941.
Yakubovich, V.A. and Starzhinskii, V.M., Linear Differential Equations with Periodic Coefficients, Nauka: Moscow, 1972 [in Russian].
Markeev, A.P., Libration Points in Celestial Mechanics and Astrodynamics, Nauka: Moscow, 1978 [in Russian].
Poincaré, H., Les métods nouvelles de la mécanique céleste, Paris: Gauthier-Villars, 1893, vol. 1.
Kreisman, B.B., Families of periodic solutions to Hamiltonian systems: nonsymmetrical periodic solutions for a planar restricted three-body problem, Cosmic Res., 2005, vol. 43, no. 2, pp. 84–106.
Holodniok, M, Klič, A., Kubiček, M., and Marek, M., Methods for the Analysis of Nonlinear Dynamical Models, Mir: Moscow, 1991 [in Russian].
Gantmakher, F.R., The Theory of Matrices, New York: Chelsea, 1959).
Williamson, J., On the normal forms of linear canonical transformations in dynamics, Am. J. Math., 1937, vol. 59, no. 3, pp. 599–617.
Bruno, A.D., The Restricted 3-Body Problem: Plane Periodic Orbits, Moscow: Nauka, 1990; New York: de Gruyter, 1994.
Karimov, S.R. and Solo’skii, A.G. Parametric continuation method for natural families of periodic motions of Hamiltonian systems, Preprint of the Inst. of Theoretical Astronomy, Russ. Acad. Sci., Moscow, 1990, no. 9.
Meyer, K.R. and Offin, D.C., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences, vol. 90, 3rd ed., New York: Springer, 2017.
Theory of Bifurcations, Arnold, V.I., Afraimovich, V.S., and Shil’nikov, L.P., Eds., Modern Problems of Mathematics. Fundamental Trends, vol. 5, VINITI Akad. Nauk SSSR, 1985.
Batkhin, A.B. and Batkhina, N.V., Hill’s Problem, Volgograd: Volgogradskoe nauchnoe Izdatel’stvo, 2009 [in Russian].
Szebehely, V., Theory of Orbits, the Restricted Problem of Three Bodies, New York: Academic, 1967.
Morales-Ruiz, J., Simó, C., and Simon, S. Algebraic proof of the non–integrability of Hill’s problem, Ergodic Theory Dynam. Syst., 2005, vol. 25, no. 4, pp. 1237–1256.
Batkhin, A.B., Symmetric periodic solutions of the Hill’s problem, Cosmic Res., 2013, vol. 51, no. 6, 452–464.
Batkhin, A.B., Web of families of periodic orbits of the generalized Hill problem, Doklady Math., 2014, vol. 90, no. 2, pp. 539–544.
Hénon, M., Numerical exploration of the restricted problem. V. Hill’s case: Periodic orbits and their stability, Astron. & Astrophys., 1969, vol. 1, pp. 223–238.
Hénon, M., Numerical exploration of the restricted problem. VI. Hill’s case: Non-periodic orbits, Astron. & Astr., 1970, no. 9, pp. 24–36.
Hénon, M., New families of periodic orbits in Hill’s problem of three bodies, Celest. Mech. Dyn. Astr., 2003, vol. 85, pp. 223–246.