Bifurcation of the essential dynamics of Lorenz maps and applications to Lorenz-like flows: Contributions to the study of the expanding case

Rafael Labarca1, Carlos Moreira2
1Departamento de Matematica y CC, Universidad de Santiago de Chile, Santiago, Chile
2Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil

Tóm tắt

In this article we provide, by using kneadings sequences, the combinatorial bifurcation diagramme associated to a typical two parameter of Lorenz maps on the real line. We apply these results to two parameter families of geometric Lorenz-like flows.

Từ khóa


Tài liệu tham khảo

Afraimovich V.S., Bykov V.V. and Shil'nikov L.P.,On structurally stable attracting limit sets of Lorenz attractor type. Trans. Mosc. Math. Soc.,44 (1983), 153–216. Arnold V.I.,Small Denominators. I. On the mapping of the circumference onto itself. Amer. Math. Soc. Transl. 2nd Ser.,46 (1965), 213–284. Babrilea F. and Jimênez Lôpez V.,A Characterization of chaotic functions with antropy zero via their scrambled sets. Math. Bohen.,120(2) (1998), 293–296. Boyland P.,Bifurcations of Circle Maps: Arnold's Tongues, Bistability and Rotation Intervals. Comm. Math. Phys.,106 (1986), 353–381. Brucks K.M., Misiurewicz M. and Tresser Ch.,Monotonicity properties of the family of trapezoidals maps. Comm. Mat. Phys.,137 (1991), 1–12. Campbell D.K., Galeeva R., Tresser CH. and Uherka D.J.,Piecewise linear models for the quasiperiodic transition to chaos. Chaos,6(2) (1996), 121–154. De Melo W. and Martens M.,Universal Models for Lorenz maps. Preprint IMPA. (1996). De Melo W. and Van Strien S.,Lectures on One Dimensional Dynamics. Springer Verlag. (1993). Guckenheimer J.,A Strange, Strange Attractor. In:Hopf Bifurcations and its applications. J.E. Marsden and M. McCracken Eds. Springer Verlag. Berlin. (1976), 368–381. Galeeva R., Martens M. and Tresser Ch.Inducing, slopes and conjugacy classes. Israel Journal or Math.,99 (1997), 123–147. Guckenheimer J. and Williams R.F.,Structural Stability of Lorenz Attractors. Publ. Math. IHES,50 (1979), 59–72. Hubbard J.H. and Sparrow C.T.,The classification of topologically expansive Lorenz maps. Comm. on Pure and App. Math.,XLIII (1990), 431–443. Labarca R.,Bifurcation of Contracting Singular Cycles. Ann. Scient. Ec. Norm. Sup. 4ème série,t. 28 (1995), 705–745. Labarca R. and Moreira C.,Essential Dynamics for Lorenz maps on the real line and the Lexicographical World. Preprint 2000 and submitted. Labarca R. and Moreira C.,Bifurcations of the Essential Dynamics of Lorenz Maps on the real line and the bifurcation scenario for the linear family. Preprint 2000 and accepted for publication in Scientia. Labarca R. and Moreira C.,Bifurcation of the Essential Dynamics of Lorenz Maps on the real line and the bifurcation scenario for Lorenz Like Flows: The Contracting Case. Preprint 2000. Lorenz E.N.,Deterministic non-periodic flow. J. Atmos. Sci.,20 (1963), 130–141. Mañé, R.,Ergodic Theory and Differentiable Dynamics. Springer Verlag, 1987. Williams R.F.,The structure of Lorenz Attractors. InTurbulence Seminar Berkeley 1976/1977. P. Bernard, T. Ratiu (Eds.) Springer-Verlag. New York, Heidelberg, Berlin, 94–112.