Bifunctional metal–organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange

Xiaohui Chen1, Wei Qin1, Jindui Hong2, Rong Xu2, Tianhua Zhou3
1School of Chemical Engineering, Fuzhou University, Fuzhou, China
2School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
3State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science. 2016;352(6290):1210.

Gao H, Yue HH, Qi F, Yu B, Zhang WL, Chen YF. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 2018;37(12):1014.

Wang S, Chen P, Bai Y, Yun JH, Liu G, Wang L. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv Mater. 2018;30(20):1800486.

Zhao Y, Li Z, Li M, Liu J, Liu X, Waterhouse GIN, Wang Y, Zhao J, Gao W, Zhang Z, Long R, Zhang Q, Gu L, Liu X, Wen X, Ma D, Wu LZ, Tung CH, Zhang T. Reductive transformation of layered-double-hydroxide nanosheets to Fe-based heterostructures for efficient visible-light photocatalytic hydrogenation of CO. Adv Mater. 2018;30(36):1803127.

Fan PD, Ji TH. Application research of MoS2 nanosheets in catalysis and biology. Chin J Rare Met. 2018;42(4):429.

Chen R, Wang P, Chen J, Wang C, Ao Y. Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation. Appl Surf Sci. 2019;473:11.

Liu W, Shen J, Yang X, Liu Q, Tang H. Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting. Appl Surf Sci. 2018;456:369.

Ao Y, Wang K, Wang P, Wang C, Hou J. Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation. Appl Catal B. 2016;194:157.

Zhang L, Zhao ZJ, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed. 2017;56(38):11326.

Huang H, Lin J, Zhu G, Weng Y, Wang X, Fu X, Long J. A long-lived mononuclear cyclopentadienyl ruthenium complex grafted onto anatase TiO2 for Efficient CO2 photoreduction. Angew Chem Int Ed. 2016;55(29):8314.

Tu W, Zhou Y, Zou Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater. 2014;26(27):4607.

Cao S, Shen B, Tong T, Fu J, Yu J. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater. 2018;28(21):1800136.

Dong WH, Wu DD, Luo JM, Xing QJ, Liu H, Zou JP, Luo XB, Min XB, Liu HL, Luo SL, Au CT. Coupling of photodegradation of RhB with photoreduction of CO2 over rGO/SrTi0.95Fe0.05O3−δ catalyst: catalyst a strategy for one-pot conversion of organic pollutants to methanol and ethanol. J Catal. 2017;349:218.

Zou JP, Chen Y, Liu SS, Xing QJ, Dong WH, Luo XB, Dai WL, Xiao X, Luo JM, Crittenden J. Electrochemical oxidation and advanced oxidation processes using a 3D hexagonal Co3O4 array anode for 4-nitrophenol decomposition coupled with simultaneous CO2 conversion to liquid fuels via a flower-like CuO cathode. Water Res. 2019;150:330.

Bai XF, Chen W, Wang BY, Feng GH, Wei W, Jiao Z, Sun YH. Recent progress on electrochemical reduction of carbon dioxide. Acta Phys Chim Sin. 2017;33(12):2388.

Liu X, Inagaki S, Gong J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew Chem Int Ed. 2016;55(48):14924.

Ou M, Tu W, Yin S, Xing W, Wu S, Wang H, Wan S, Zhong Q, Xu R. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed. 2018;57(41):13570.

Gao D, Cai F, Wang G, Bao X. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Curr Opin Green Sustain Chem. 2017;3:39.

Xie H, Wang T, Liang J, Li Q, Sun S. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today. 2018;21:41.

Takeda H, Koike K, Inoue H, Ishitani O. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc. 2008;130(6):2023.

Cohen SM. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev. 2011;112(2):970.

Garcia H, Ferrer B. Photocatalysis by MOFs. In: i Xamena FX, Gascon J, editors. Metal Organic Frameworks as Heterogeneous Catalysts. Cambridge: Royal Society of Chemistry; 2103. 365.

Tian L, Yang X, Liu Q, Qu F, Tang H. Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. Appl Surf Sci. 2018;455:403.

Liu MR, Hong QL, Li QH, Du Y, Zhang HX, Chen S, Zhou T, Zhang J. Cobalt boron imidazolate framework derived cobalt nanoparticles encapsulated in B/N codoped nanocarbon as efficient bifunctional electrocatalysts for overall water splitting. Adv Funct Mater. 2018;28(26):1801136.

Xiao JD, Han L, Luo J, Yu SH, Jiang HL. Integration of plasmonic effects and Schottky junctions into metal-organic framework composites: steering charge flow for Enhanced visible-light photocatalysis. Angew Chem Int Ed. 2018;57(4):1103.

Meyer K, Ranocchiari M, van Bokhoven JA. Metal organic frameworks for photo-catalytic water splitting. Energy Environ Sci. 2015;8(7):1923.

Wang S, Yao W, Lin J, Ding Z, Wang X. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew Chem Int Ed. 2014;53(4):1034.

Zhang T, Lin W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev. 2014;43(16):5982.

Zhu QL, Xu Q. Metal-organic framework composites. Chem Soc Rev. 2014;43(16):5468.

Gomes Silva C, Luz I, Llabrés i Xamena FX, Corma A, García H. Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chem Eur J. 2010;16(36):11133.

Fateeva A, Chater PA, Ireland CP, Tahir AA, Khimyak YZ, Wiper PV, Darwent JR, Rosseinsky MJ. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew Chem Int Ed. 2012;51(30):7440.

Long J, Wang S, Ding Z, Wang S, Zhou Y, Huang L, Wang X. Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem Commun. 2012;48(95):11656.

Xu HQ, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu SH, Jiang HL. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states. J Am Chem Soc. 2015;137(42):13440.

Chen EX, Qiu M, Zhang YF, Zhu YS, Liu LY, Sun YY, Bu X, Zhang J, Lin Q. Acid and base resistant zirconium polyphenolate-metalloporphyrin scaffolds for efficient CO2 photoreduction. Adv Mater. 2018;30(2):1704388.

Wang D, Huang R, Liu W, Sun D, Li Z. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 2014;4(12):4254.

Wang C, Xie Z, deKrafft KE, Lin W. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc. 2011;133(34):13445.

Wang C, Wang JL, Lin W. Elucidating molecular iridium water oxidation catalysts using metal-organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. J Am Chem Soc. 2012;134(48):19895.

Zhou T, Du Y, Borgna A, Hong J, Wang Y, Han J, Zhang W, Xu R. Post-synthesis modification of a metal-organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy Environ Sci. 2013;6(11):3229.

Xiao JD, Jiang HL. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc Chem Res. 2018;51(4):910.

Li R, Hu J, Deng M, Wang H, Wang X, Hu Y, Jiang HL, Jiang J, Zhang Q, Xie Y, Xiong Y. Integration of an inorganic semiconductor with a metal-organic framework: a platform for enhanced gaseous photocatalytic reactions. Adv Mater. 2014;26(28):4783.

Sun D, Fu Y, Liu W, Ye L, Wang D, Yang L, Fu X, Li Z. Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Chem Eur J. 2013;19(42):14279.

Lei Z, Xue Y, Chen W, Qiu W, Zhang Y, Horike S, Tang L. MOFs-based heterogeneous catalysts: new opportunities for energy-related CO2 conversion. Adv Energy Mater. 2018;8(32):1801587.

Li F, Wang D, Xing QJ, Zhou G, Liu SS, Li Y, Zheng LL, Ye P, Zou JP. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance. Appl Catal B. 2019;243:621.

Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed. 2012;51(14):3364.

Pullen S, Fei H, Orthaber A, Cohen SM, Ott S. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework. J Am Chem Soc. 2013;135(45):16997.

Kim M, Cahill JF, Su Y, Prather KA, Cohen SM. Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal-organic frameworks. Chem Sci. 2012;3(1):126.

Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chem Eur J. 2011;17(24):6643.

Kim M, Cahill JF, Fei H, Prather KA, Cohen SM. Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J Am Chem Soc. 2012;134(43):18082.