Bifunctional Chelators for Therapeutic Lanthanide Radiopharmaceuticals
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chatal J.-F., 1999, Radionuclide therapy. Lancet 354, 931−935
Joensuu H., 1999, Acta Oncol. Suppl., 13, 83
Britton K. E., 1997, Towards the goal of cancer-specific imaging and therapy. Nucl. Med. Commun. 18, 992−1005
Heeg M. J., 1999, The role of inorganic chemistry in the developmentof radiometal agents for cancer therapy. Acc. Chem. Res. 32, 1053−1060
McEwan A. J. B., 1997, Unsealed source therapy of painful bone metastases: an update. Semin. Nucl. Med. 27, 165−182
Reubi J. C., 1997, Q. J. Nucl. Med., 41, 70
Anderson C. J., 1995, J. Nucl. Med., 36
De Jong M., 1997, Eur. J. Nucl. Med., 24
Stolz B., 1997, Digestion, 57, 21
Otte A., 1997, Eur. J. Nucl. Med., 24
Anderson C. J., 1998, J. Nucl. Med., 39
De Jong M., 1998, Int. J. Cancer, 75, 10.1002/(SICI)1097-0215(19980130)75:3<406::AID-IJC14>3.0.CO;2-6
Leimer M., 1998, J. Nucl. Med., 39
Otte A., 1998, Yttrium-90-labeled somatostatin-analogue for cancer treatment. Lancet. 351, 417−418
Smith-Jones P. M., 1998, Synthesis and characterization of [90Y]-Bz-DTPA-oct: a yttrium-90-labeled oactreotide analogue for radiotherapy of somatostatin receptor-positive tumors. Nucl. Med. Biol. 25, 181−188
De Jong M., 1998, Tyr3]octreotide: peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl. Med. Commun. 19, 283−288.
De Jong M., 1998, Comparison of 111In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Anticancer Res. 58, 437−441
Cremonesi M., 1999, Eur. J. Nucl. Med., 26
Lewis J. S., 1999, vitro and in vivo evaluation of 64Cu-TETA- Tyr3-octreotate. A new somatostatin analogue with improved target tissue uptake. Nucl. Med. Biol. 26, 267−273
Lewis J. S., 1999, Radiotherapy and dosimetry of 64Cu-TETA- Tyr3-octreotate in a somatostatin receptor-positive, tumor-bearing rat model. Clin. Cancer Res. 5, 3608−3616
Van Eijck C. H. J., 1999, S177−S181.
Rösch F., 1999, Eur. J. Nucl. Med., 26
Heppler A., 1999, Chem. Eur. J., 5
Merlo, A., Hausmann, O., Wasner, M., Steiner, P., Otte, A., Jermann, E., Freitag, P., Reubi, J.C., Müller-Brand, J., Gratzl, O., and Mäcke, H. R. (1999) Locoregional regulatory peptide receptor targeting with diffusiblw somatostatin analogue90Y-labeled DOTA-DPhe1-Tyr3-octreotide (DOTATOC): a pilot study in human gliomas.Clin. Cancer Res. 5, 1025−1033.
Behr T. M., 1999, J. Nucl. Med., 40
Behr T. M., 1999, Clin. Cancer Res., 5, 3124s
Ruth T. J., 1989, Radionuclide production for biosciences. Nucl. Med. Biol. 16, 323−336
Ehrhardt G. J., 1998, Reactor-produced radionuclides at the University of Missouri Research Reactior. Appl. Radiat. Isot. 49, 295−297
Karenlin Y. A., 1998, RIAR reactor produced radionuclides. Appl. Radiat. Isot. 49, 299−304
Knapp, F. F., Jr. (Russ), Mirzadeh, S., Beets, A. L., O'Doherty, M., Blower, P. J., Verdera, E. S., Gaudiano, J. S., Kropp, J., Gihlke, J., Palmedo, H., and Biersack, H.J. (1998) Reactor-produced radioisotopes from ORNL for bone pain palliation.Appl. Radiat. Isot. 49, 309−315.
Quadri S. M., 1998, Q. J. Nucl. Med., 42
Smith-Jones P. M., 1997, Synthesis, biodistribution and renal handling of various chelate-somatostatin conjugates with metabolizable linking groups. Nucl. Med. Biol. 24, 761−769
Studer M., 1992, A convenient and flexible approach for introducing linkers on bifunctional chelating agents. Bioconjugate Chem. 3, 420−423
Li M., 1993, Synthesis, metal chelate stability studies, and enzyme digestion of a peptide-linked DOTA derivative and its corresponding radiolabeled immunoconjugates. Bioconjugate Chem. 4, 275−283
Peterson J. J., 1999, Enzymatic cleavage of peptide-linked radiolabeles from immunoconjugates. Bioconjugate Chem. 10, 553−557
Peterson J. J., 1998, Cathepsin substrate as cleavable linkers in bioconjugates, selected from a fluorescence quench conbinatorial library. Bioconjugate Chem. 9, 618−626
Liu S., 1999, Chem. Rev., 99
Blower P., J., 1996, Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl. Med. Biol. 23, 957−980
Wolf W., 1986, Criteria for the selection of the most desirable radionuclide for radiolabeling of monoclonal antibodies. Nucl. Med. Biol. 13, 319−324
Fawwaz R. A., 1986, The use of radionuclides for tumor therapy. Nucl. Med. Biol. 13, 429−436
Schubiger P. A., 1996, Vehicles, chelators, and radionuclides: chossing the “building blocks
Ando A., 1989, Nucl. Med. Biol., 16, 80
Sherry, A. D., Cacheris, W. P., and Kuan, K.T. (1988) Stability constants for Gd3+binding to model DTPA-conjugates and DTPA-proteins: implications for their use as magnetic resonance contrast agents.Magn. Reson. Med. 8,180−190.
Wedeking P., 1992, Gd(DOTA)-, and Gd(acetate)n in mice. Magn. Reson. Imaging 10, 641−648.
Cacheris W. P., 1990, The relationship between thermodynamic and the toxicity of gadolinium complexes. Magn. Reson. Imaging 9, 467−481
Harrison A., 1993, Hepato-billiary and renal excretion in mice of charged and neutral gadolinium complexes of cyclic tetraaza-phosphinic and carboxylic acids. Magn. Reson. Imaging 11, 761−770
Laufer R. B., 1987, Chem. Rev., 87
Pulukkody K. P., 1993, J. Chem. Soc., Perkin Trans. 605−620.
Cox J. L., 1990, J. Chem. Soc., Perkin Trans. 2567−2576.
Broan C. J., 1991, Perkin Trans. 87−99.
Parker D., 1992, J. Chem. Soc., Chem. Commun. 1441−1443.
Moi M. K., 1988, J. Am. Chem. Soc., 110
Takenouchi K., 1993, J. Org. Chem., 58
McMurray T. J., 1998, J. Med. Chem., 41
Goeckeler W. F., 1987, J. Nucl. Med., 28
Goeckeler W. F., 1986, 153Sm radiotherapeutic bone agents. Nucl. Med. Biol. 13, 479−482
Kim W. D., 1995, Relaometry, luminescence measurements, electronphorisis, and animal biodistribution of lanthanide(III) complexes of some polyaza macrocyclic acetates containing pyridine. Inorg. Chem. 34, 2233−2243
Atkins H. L., 1993, Biodistribution of Sn 117m(4+)DTPA for palliative therapy of painful osseous metastasis. Radiology 186, 279−283
Kodama, M., Koike, T., Mahatma, A. B., and Kimara, E. (1991) Thermodynamic and kinetic studies of lanthanide complexes of 1,4,7,10,13-pentaazacyclopentadecane-N,N‘,N‘ ‘,N‘ ‘‘,N‘ ‘‘ ‘-pentaacetic acid and 1,4,7,10,13,16-hexaazacyclooctaadecane-N,N‘,N‘ ‘,N‘ ‘‘,N‘ ‘‘ ‘,N‘ ‘‘ ‘‘-hexaaacetic acid.Inorg. Chem. 31, 1270−1273.
Scarrow R. C., 1991, Iron(III) coordination chemistry of linear dihydroxyserine compounds derived from enterobactin. Inorg. Chem. 30, 900−906
Stack T. D. P., 1992, J. Am. Chem. Soc., 114
Karpishin T. B., 1993, J. Am. Chem. Soc., 115
Karpishin T. B., 1993, J. Am. Chem. Soc., 115
Hider R. C., 1991, Clinically useful chelators of tripositive elements. Prog. Med. Chem. 28, 41−173, and references therein
Hider R. C., 1991, Iron chelating agetns in medicine. The application of bidentate hydroxypyridin-4-ones. Perspect. Bioinorg. Chem. 1, 209−253, and references therein
Orvig C., 1993, Coordination Chemistry of Aluminum
Gopalan A. S., 1992, J. Chem. Soc., Chem. Commun. 1266−1268.
Ketring A. R., 1987, 153Sm-EDTMP and 186Re−HEDP as bone therapeutic radiopharmaceuticals. Nucl. Med. Biol. 14, 223−232
Bayouth J. E., 1995, J. Nucl. Med., 36
Marchi A., 1992, J. Chem. Soc., Dalton Trans. 1485−1490.
Anderson C. J., 1994, N,N‘-Ethylene-di-l-cysteine (EC) complexes of Ga(III) and In(III): molecular modeling, thermodynamic stability and in vivo studies. Nucl. Med. Biol. 22, 165−173
Ma R., 1995, Inorg. Chim. Acta, 236, 82
Li Y. J., 1996, N,N‘-Ethylenedi-l-cysteine (EC) and it metal complexes: synthesis, characterization, crystal structures, and equalibrium constants. Inorg. Chem. 35, 404−414
Sun Y., 1996, J. Med. Chem., 39
Sun Y., 1995, N,N‘-Bis(2-mercaptoethyl)ethylenediamine-N,N‘-diacetic acid
Hancock R. D., 1988, The chelate, cryptate, and macrocyclic effects. Comments Inorg. Chem. 6, 237−284
Hancock R. D., 1994, Coord. Chem. Rev., 133, 65
Lecomte C., 1997, Prediction of the coordination scheme of lanthanide N-tetrasubstituted tetraazamacrocycles: an X-ray crystallography and molecular modeling study. Inorg. Chem. 36, 3827−3838
Meyer M., 1997, J. Am. Chem. Soc., 119
Tor Y., 1992, J. Am. Chem. Soc., 114
Shanzer A., 1989, Receptor mapping with artificial siderophores. Pure Appl. Chem. 61, 1529−1534
Yakirevitch P., 1993, Chiral siderophore analogues: ferrioxamines and their iron(III) coordination properties. Inorg. Chem. 32, 1779−1787
Dayan I., 1993, Chiral siderophore analogues: ferrochrome. Inorg. Chem. 32, 1467−1475
Tor Y., 1992, J. Am. Chem. Soc., 114
Liu S., 1993, Hexadentate N3O3 amine phenol ligands for group 13 Metal Ions: Evidence for intrastrand and interstrand hrdrogen bonds in polydentate amine phenols. Inorg. Chem. 32, 4268−4276
Liu S., 1993, Gd
Liu, S., Wong, E., Karunaratne, V., Rettig, S. J., and Orvig, C. (1993) Highly flexible chelating ligands for group 13 metals. Design, synthesis and characterization of hexadentate (N3O3) tripodal amine phenol ligand complexes of aluminum, gallium and indium.Inorg. Chem.32, 1756−1765.
Liu, S., Rettig, S. J., and Orvig, C. (1992) Polydentate ligand chemistry of group 13 metals: Effects of the size and donor-selectivity of metal ions on structures and properties of aluminum, gallium and indium complexes with potentially heptadentate (N4O3) amine phenol ligands.Inorg. Chem.31, 5400−5407.
Liu S., 1992, J. Am. Chem. Soc., 114
Renaud, F., Piguet, C., Bernardinelli, G., Hopfgartner, G., and Bünzli, J.C. G. (1999) C3-symmetrical lanthanide podates organized by intromolecular trifurcated hydrogen bonds.Chem. Commun.457−458.
Sundberg M. W., 1974, Selective binding of metal ions to macromolecules using bifunctional analogs of EDTA. Nature 250, 587−589
Krejcarek G. E., 1977, Covalent attachment of chelating groups of macromolecules. Biochem. Biophys. Res. Commun. 77, 581−588
Paik C. H., 1983, J. Nucl. Med., 24
Wu C., 1997, Radiochim. Acta, 79
Pippin C. G., 1992, Spectrophotometric method for the determination of a bifunctional DTPA ligand in DTPA-monoclonal antibody conjugates. Bioconjugate Chem. 3, 342−345
Brechbiel M. W., 1991, Backbone-substituted DTPA ligands for 90Y radioimmunotherapy. Bioconjugate Chem. 2, 187−194
Brechbiel M. W., 1986, Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies. Inorg. Chem. 25, 2772−2781
Wu C., 1997, Stereochemical influence on the stability of radio-metal complexes in vivo. Synthesis and evaluation of the four stereoisomers of 2-(p-nitrobenzyl)-trans-CyDTPA. Bioorg. Med. Chem. 5
Camera L., 1994, J. Nucl. Med., 35
Cummins C. H., 1991, A convenient synthesis of bifunctional chelating agents based on diethylenetriaminepentaacetic acid and their coordination chemistry with yttrium(III). Bioconjugate Chem. 2, 180−186
Williams M. A., 1993, J. Org. Chem., 58
Pederson C. J., 1967, J. Am. Chem. Soc., 89
Pietraszkiewicz M., 1992, J. Coord. Chem., 27
Kaden T. A., 1999, Coord. Chem. Rev. 190−, 192
Kovacs Z., 1999, A convenient synthesis of 1,4,7,10,13-pentaazacyclopentadecane. Synth. Commun. 29, 2817−2822
Argese M., 1997, A process for the preparation of tetraazamacrocycles. PCT WO 97/49691
Argese M., 2000, Process for the preparation of tetraazamacrocycles. U.S. patent 6,013,793
Helps I. M., 1989, General routes for the synthesis of mono, di and tri-N-substituted derivatives of cyclam. Tetrahedron 45, 219−226
Dischino, D. D., Delaney, E. J., Emswiler, J. E., Gaughan, G. T., Prasad, J. S., Srivasrava, S. K., and Tweedle, M. F. (1991) Synthesis of nonionic gadolinium chelates useful as contrast agents for magnetic resonance imaging. 1,4,7-Tris(carboxymethyl)-10-substituted-1,4,7,10-tetraazacyclododecane and their corresponding gadolinium chelates.Inorg. Chem. 30, 1265−1269.
Kruper W. J., Jr., 1993, J. Org. Chem., 58
Trabaud C., 1998, Synthesis of new tetrakis N-substituted tetra-azamacrocycles. Synth. Commun. 28, 311−317
Mailet M., 1998, Tetrahedron Lett., 39
Ruser G., 1990, Synthesis and evaluation of two new bifunctional carboxymethylated tetraazamacrocyclic chelating agents for protein labeling with indium-111. Bioconjugate Chem. 1, 345−349
Anelli P. L., 1991, J. Chem. Soc., Chem. Commun. 1317−1318.
Guillaume D., 1998, Efficient one-pot synthesis of JM3100. Synth. Commun. 28, 2903−2906
Parker D., 1992, J. Chem. Soc., Chem. Commun. 1441−1443.
Cox J. L., 1990, J. Chem. Soc., Perkin Trans. 2567−2576.
Broan C. J., 1991, Perkin Trans. 87−99.
Norman T. J., 1995, J. Chem. Soc., Chem. Commun. 1877−1878.
Broan C. J., 1992, Synthesis of new macrocyclic aminophosphinic acid complexing agents and their C- and P-functionalized derivatives for protein linkage. Synthesis 63−68
Meares C. F., 1984, Metal chelates as probes of biological systems. Acc. Chem. Res. 17, 202−209
Meares C. F., 1986, Chelating agents for the binding of metal ions to antibodies. Nucl. Med. Biol. 13, 311−318
Moi M. K., 1985, Copper chelates as probes of biological systems: stable copper complexes with macrocyclic bifunctional chelating agent. Anal. Chem. 148, 249−253
McCall M. J., 1990, Simplified method for conjugating macrocyclic bifunctional chelating agents to antibodies via 2-iminothiolane. Bioconjugate Chem. 1, 222−226
Deshpande S. V., 1990, J. Nucl. Med., 31
Moi M. K., 1988, J. Am. Chem. Soc., 110
Morphy J. R., 1988, J. Chem. Soc., Chem. Commun. 156−158.
Parker D., 1989, Implementation of macrocycle conjugated antibodies for tumor targeting. Pure Appl. Chem. 61, 1637−1641
Morphy J. R., 1990, J. Chem. Soc., Perkin Trans. 573−585.
Moreau P., 1997, synthesis of the bifunctional chelating agents 6-(4-aminobenzyl)-1,4,8,11-tetraazacyclotetradecane-N‘,N‘ ‘,N‘ ‘‘-tetraacetic acid (H2NBn-TETA). Synthesis 1010−1012
McMurry T. J., 1992, Convenient synthesis of bifunctional tetraaza macrocycles. Bioconjugate Chem. 3, 108−117
Mischra A. K., 1996, New J. Chem., 20
Rauk A., 1970, Engl. 9, 400−414.
Konings M. S., 1990, Gadolinium complexation by a new DTPA-amide ligand. Amide oxygen coordination. Inorg. Chem. 29, 1488−1491
Bligh S. W. A., 1995, Neutral gadolinium(III) complexes of bulky octadentate dtpa derivatives as potential contrast agent for magnetic resonance imaging. Polyhedron 14, 567−569
Maecke H. R., 1989, J. Nucl. Med., 30
Jenkins B. G., 1988, Solution structure and dynamics of lanthanide(III) complexes of diethylenetriaminepentaacetic acid: two-dimensional NMR analysis. Inorg. Chem. 27, 4730−4738
Peters J. A., 1988, Multinuclear NMR study of lanthanide(III) complexes of diethylenetriaminepentaacetate. Inorg. Chem. 27, 4686−4691
Geraldes, C. F. G. C., Urbano, A. M., Hoefnagel, M. A., and Peters, J. A. (1993) Multinuclear magnetic resonance study of the structure and dynamics of lanthanide(III) complexes of bis(proplamide) of diethylenetriaminepentaacetic acid in aqueous solution.Inorg. Chem. 32,2426−2432.
Rizkalla E. N., 1993, PMR, and fluoresence studies for the complexation of trivalent lanthanides, Ca2+, Cu2+, and Zn2+ by diethylenetriaminepentaacetic acid bis(methylamide). Inorg. Chem. 32, 582−586.
Geraldes C. F. G. C., 1991, J. Chem. Soc., Chem. Commun. 656−658.
Lammers H., 1997, Structures and dynamics of lanthanide(III) complexes of suggar-based DTPA-bis(amides) in aqueous solution: a multinuclear NMR study. Inorg. Chem. 36, 2527−2538
Liu S., 2001, Isomerism and solution dynamics of 90Y-labeled DTPA-Biomolecule conjugates. Bioconjugate Chem. 12 , 84−91
Uggeri, F., Aime, S., Anelli, P. L., Botta, M., Brocchetta, M., de Haën, C., Ermondi, G., Grandi, M., and Paoli, P. (1995) Novel contrast agents for magnetic resonance imaging. Synthesis and characterization of the ligand BOPTA and its Ln(III) complexes (Ln = Gd, La, Lu). X-Ray structure of disodium (TPS-9−145337286-C−S)-[4-carboxy-5,8,11-tris(carboxymethyl)-1-phenyl-2-oxa-5,8,11-triazatridecan-13-oato(5-)]gadolinate(2-) in a mixture with its enatiomer.Inorg. Chem. 34, 633−642.
Brittain H. G., 1984, Luminescence and NMR studies of the conformational isomers of lanthanide 33 complexes with optically active polyaza polycarboxylic macrocycles. Inorg. Chem. 23, 4459−4466
Howard, J. A. K., Kenwright, A. M., Moloney, J. M., Parker, D., Port, M., Navet, M., Rousseau, O., and Woods, M. (1998) Structure and dynamics of all of the stereoisomers of europium complexes of tetra(carboxyethyl)derivatives of dota: ring inversion is decoupled from cooperative arm rotation in theRRRRandRRRSisomers.Chem Commun.1381−1382.
Kang, S. I., Ranganathan, R. S., Emswiler, J. E., Kumar, K., Gougoutas, J. Z., Malley, M. F., and Tweedle, M. F. (1993) Synthesis, characterization, and crystal structure of gadolinium(III) chelate of (1R, 4R, 7R)-α,α‘,α‘ ‘-trimethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3MA).Inorg. Chem. 32, 2912−2918.
Spirlet, M.R., Rebizant, J., Desreux, J. F., and Loncin, M.F. (1984) Crystal and molecular structure of sodium aquo(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetato)europate(III) tetrahydrate, Na+(EuDOTA·H2O)-.4H2O, and its relevance to NMR studies of the conformational behavior of the lanthanide complexes formed by the macrocyclic ligand DOTA.Inorg. Chem. 23, 359−363.
Chang C. A., 1993, Gd) and Na[(DOTA)] (M = Fe, Y, Gd). Inorg. Chem. 32, 3501−3508.
Desreux J. F., 1980, Nuclear magnetic resonance spectroscopy of lanthanide complexes with tetraacetic tetraaza macrocycle. Unusual conformation properties. Inorg. Chem. 19, 1319−1324
Aime S., 1992, NMR study of solution structures and dynamics of lanthanide(III) complexes of DOTA. Inorg. Chem. 31, 4291−4299
Aime, S., Anelli, P. L., Botta, M., Fedeli, F., Ermondi, G., Grandi, M., Paoli, P., and Uggeri, F. (1992) Synthesis, characterization, and1/T1NMRD profiles of gadolinium(III) complexes of monoamide derivatives of DOTA-like ligands. X-Ray structure of the 10-[2-[[2-hydroxy-1-(hydroxymethyl)ethyl]amino]-1-(phenylmethoxy)methyl]2-oxoethyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid-gadolinium(III) complex.Inorg. Chem. 31, 2422−2428.
Aime S., 1996, Gd, Ho, Yb) containing a p-nitrophenyl substituent. Inorg. Chem. 35, 2726−2736.
Sherry A. D., 1997, J. Alloys Compd., 249
Kim W. D., 1997, NMR studies of the lanthanide(III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methanephosphonic acid mono(2‘,2‘,2‘-trifluoroethyl) ester). Inorg. Chem. 36, 4128−4134
Aime S., 1997, J. Chem. Soc., Dalton Trans. 3623−3636.
Sherry A. D., 1989, Synthesis and characterization of the gadolinium(3+) complex of DOTA-propylamide: a model DOTA-protein conjugate. Inorg. Chem. 28, 620−622
Lewis, M. R., Raubitschek, A., and Shively, J. E. (1994) A facile, water soluble method for modification of proteins with DOTA. Use of elevated temperature and optimized pH to achieve high specific activity and high chelate stability in radiolabeled immunoconjugates.Bioconjugate Chem.5, 565−576.
Corson D. T., 2000, Efficient multigram synthesis of the bifunctional chelating agent (S)-1-p-isothiocyanatobenzyl-diethylene-tetraaminepentaacetic acid. Bioconjugate Chem. 11, 292−299
DeNardo S. J., 1995, J. Nucl. Med., 36
Stimmel J. B., 1995, Yttrium-90 chelation properties of tetraazatetraacetic acid macrocycles, diethylenetriaminepentaacetic acid analogues, and a novel terpyridine acyclic chelator. Bioconjugate Chem. 6, 219−225
Stimmel J. B., 1998, Sammarium-153 and lutetium-177 chelation properties of selected macrocyclic and cyclic ligands. Nucl. Med. Biol. 25, 117−125
Keire D. A., 1999, NMR studies of the metal loading kinetics and acid−base chemistry of DOTA and butylamide-DOTA. Bioconjugate Chem. 10, 454−463
Delgado R., 1982, Metal complexes of cyclic tetra-azatetraacetic acids. Talanta 29, 815−822
Kumar K., 1994, Synthesis, stability, and structure of gadolinium(III) and yttrium(III) macrocyclic poly(amino carboxylates). Inorg. Chem. 33, 3567−3575
Kumar K., 1993, Equilibrium and kinetic studies of lanthanide complexes of macrocyclic polyamino carboxylates. Inorg. Chem. 32, 587−593
Clarke E. T., 1991, Inorg. Chim. Acta, 190, 36
Clarke E. T., 1991, Inorg. Chim. Acta, 190, 46
Kukis D. L., 1998, J. Nucl. Med., 39
Dischino, D. D., Delaney, J. J., Emswiler, J. E., Gaughan, G. T., Prasad, J. S., Srivasrava, S. K., and Tweedle, M. F. (1991) Synthesis of nonionic gadolinium chelates useful as contrast agents for magnetic resonance imaging: 1,4,7,tris(carboxymethyl)-10-substituted-1,4,7,10-tetraazacyclododecanes and their corresponding gadolinium chelates.Inorg. Chem. 30, 1265−1269.
Kumar K., 1994, Effect of ligand basicity on the formation and dissociation equilibria and kinetics of Gd3+ complexes of macrocyclic polyamino carboxylates. Inorg. Chem. 33, 3823−3829
Kumar K., 1993, Macrocyclic polyaminocarboxylate complexes of lanthanide as magnetic resonance imaging contrast agents. Pure Appl. Chem. 65, 515−520
Kumar K., 1995, Cu2+, and Zn2+ complexes of macrocyclic polyamino carboxylates. Inorg. Chem. 34, 6472−6480.
Wang, X., Jin, T., Combin, V., Lopez-Mut, A., Merciny, E., and Desreux, J. F. (1992) A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylaic MRI contrast agent.Inorg. Chem. 31, 1095−1099.
Jang Y. H., 1999, J. Am. Chem. Soc., 121