Bifunctional Chelators for Therapeutic Lanthanide Radiopharmaceuticals

Bioconjugate Chemistry - Tập 12 Số 1 - Trang 7-34 - 2001
Shuang Liu1, David S. Edwards2
1Medical Imaging Division, DuPont Pharmaceuticals Company, 331 Treble Cove Road, North Billerica, Massachusetts 01862, USA.
2Medical Imaging Division, DuPont Pharmaceuticals Company,331 Treble Cove Road, North Billerica, Massachusetts 01862

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chatal J.-F., 1999, Radionuclide therapy. Lancet 354, 931−935

Joensuu H., 1999, Acta Oncol. Suppl., 13, 83

Britton K. E., 1997, Towards the goal of cancer-specific imaging and therapy. Nucl. Med. Commun. 18, 992−1005

Volkert W. A., 1999, Chem. Rev., 99, 10.1021/cr9804386

Heeg M. J., 1999, The role of inorganic chemistry in the developmentof radiometal agents for cancer therapy. Acc. Chem. Res. 32, 1053−1060

McEwan A. J. B., 1997, Unsealed source therapy of painful bone metastases:  an update. Semin. Nucl. Med. 27, 165−182

Serafini A. N., 1994, Int. J. Radiat. Oncology Biol. Phys., 30, 10.1016/0360-3016(94)90327-1

Reubi J. C., 1997, Q. J. Nucl. Med., 41, 70

Anderson C. J., 1995, J. Nucl. Med., 36

De Jong M., 1997, Eur. J. Nucl. Med., 24

Stolz B., 1997, Digestion, 57, 21

Otte A., 1997, Eur. J. Nucl. Med., 24

Anderson C. J., 1998, J. Nucl. Med., 39

De Jong M., 1998, Int. J. Cancer, 75, 10.1002/(SICI)1097-0215(19980130)75:3<406::AID-IJC14>3.0.CO;2-6

Leimer M., 1998, J. Nucl. Med., 39

Otte A., 1998, Yttrium-90-labeled somatostatin-analogue for cancer treatment. Lancet. 351, 417−418

Smith-Jones P. M., 1998, Synthesis and characterization of [90Y]-Bz-DTPA-oct:  a yttrium-90-labeled oactreotide analogue for radiotherapy of somatostatin receptor-positive tumors. Nucl. Med. Biol. 25, 181−188

De Jong M., 1998, Tyr3]octreotide:  peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl. Med. Commun. 19, 283−288.

Stolz B., 1998, Eur. J. Nucl. Med., 25, 10.1007/s002590050268

De Jong M., 1998, Comparison of 111In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Anticancer Res. 58, 437−441

Reubi J. C., 1998, Eur. J. Nucl. Med., 25, 10.1007/s002590050247

Cremonesi M., 1999, Eur. J. Nucl. Med., 26

De Jong M., 1999, Eur. J. Nucl. Med., 26, 10.1007/s002590050439

Lewis J. S., 1999, vitro and in vivo evaluation of 64Cu-TETA- Tyr3-octreotate. A new somatostatin analogue with improved target tissue uptake. Nucl. Med. Biol. 26, 267−273

Lewis J. S., 1999, Radiotherapy and dosimetry of 64Cu-TETA- Tyr3-octreotate in a somatostatin receptor-positive, tumor-bearing rat model. Clin. Cancer Res. 5, 3608−3616

Van Eijck C. H. J., 1999, S177−S181.

Virgolini I., 1997, Eur. J. Clin. Invest., 27, 10.1046/j.1365-2362.1997.1990742.x

Rösch F., 1999, Eur. J. Nucl. Med., 26

Heppler A., 1999, Chem. Eur. J., 5

Otte A., 1999, Eur. J. Nucl. Med., 26, 10.1007/s002590050476

Merlo, A., Hausmann, O., Wasner, M., Steiner, P., Otte, A., Jermann, E., Freitag, P., Reubi, J.C., Müller-Brand, J., Gratzl, O., and Mäcke, H. R. (1999) Locoregional regulatory peptide receptor targeting with diffusiblw somatostatin analogue90Y-labeled DOTA-DPhe1-Tyr3-octreotide (DOTATOC):  a pilot study in human gliomas.Clin. Cancer Res. 5, 1025−1033.

Behr T. M., 1999, J. Nucl. Med., 40

Behr T. M., 1999, Clin. Cancer Res., 5, 3124s

Ruth T. J., 1989, Radionuclide production for biosciences. Nucl. Med. Biol. 16, 323−336

Ehrhardt G. J., 1998, Reactor-produced radionuclides at the University of Missouri Research Reactior. Appl. Radiat. Isot. 49, 295−297

Karenlin Y. A., 1998, RIAR reactor produced radionuclides. Appl. Radiat. Isot. 49, 299−304

Knapp, F. F., Jr. (Russ), Mirzadeh, S., Beets, A. L., O'Doherty, M., Blower, P. J., Verdera, E. S., Gaudiano, J. S., Kropp, J., Gihlke, J., Palmedo, H., and Biersack, H.J. (1998) Reactor-produced radioisotopes from ORNL for bone pain palliation.Appl. Radiat. Isot. 49, 309−315.

Quadri S. M., 1998, Q. J. Nucl. Med., 42

Williams L. E., 1998, Bioconjugate Chem., 9, 93, 10.1021/bc970137n

Arano Y., 1991, Bioconjugate Chem., 2, 76, 10.1021/bc00008a001

Smith-Jones P. M., 1997, Synthesis, biodistribution and renal handling of various chelate-somatostatin conjugates with metabolizable linking groups. Nucl. Med. Biol. 24, 761−769

Studer M., 1992, A convenient and flexible approach for introducing linkers on bifunctional chelating agents. Bioconjugate Chem. 3, 420−423

Li M., 1993, Synthesis, metal chelate stability studies, and enzyme digestion of a peptide-linked DOTA derivative and its corresponding radiolabeled immunoconjugates. Bioconjugate Chem. 4, 275−283

Peterson J. J., 1999, Enzymatic cleavage of peptide-linked radiolabeles from immunoconjugates. Bioconjugate Chem. 10, 553−557

Peterson J. J., 1998, Cathepsin substrate as cleavable linkers in bioconjugates, selected from a fluorescence quench conbinatorial library. Bioconjugate Chem. 9, 618−626

Jurisson S., 1999, Chem. Rev., 99, 10.1021/cr980435t

Liu S., 1999, Chem. Rev., 99

Anderson C. J., 1999, Chem. Rev., 99, 10.1021/cr980451q

Blower P., J., 1996, Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl. Med. Biol. 23, 957−980

Wolf W., 1986, Criteria for the selection of the most desirable radionuclide for radiolabeling of monoclonal antibodies. Nucl. Med. Biol. 13, 319−324

Fawwaz R. A., 1986, The use of radionuclides for tumor therapy. Nucl. Med. Biol. 13, 429−436

Schubiger P. A., 1996, Vehicles, chelators, and radionuclides:  chossing the “building blocks

Ando A., 1989, Nucl. Med. Biol., 16, 80

Jackson G. E., 1990, Magn. Reson. Med., 16, 66, 10.1002/mrm.1910160107

Sherry, A. D., Cacheris, W. P., and Kuan, K.T. (1988) Stability constants for Gd3+binding to model DTPA-conjugates and DTPA-proteins:  implications for their use as magnetic resonance contrast agents.Magn. Reson. Med. 8,180−190.

Wedeking P., 1992, Gd(DOTA)-, and Gd(acetate)n in mice. Magn. Reson. Imaging 10, 641−648.

Cacheris W. P., 1990, The relationship between thermodynamic and the toxicity of gadolinium complexes. Magn. Reson. Imaging 9, 467−481

Harrison A., 1993, Hepato-billiary and renal excretion in mice of charged and neutral gadolinium complexes of cyclic tetraaza-phosphinic and carboxylic acids. Magn. Reson. Imaging 11, 761−770

Laufer R. B., 1987, Chem. Rev., 87

Caravan P., 1999, Chem. Rev., 99, 10.1021/cr980440x

Pulukkody K. P., 1993, J. Chem. Soc., Perkin Trans. 605−620.

Cox J. L., 1990, J. Chem. Soc., Perkin Trans. 2567−2576.

Broan C. J., 1991, Perkin Trans. 87−99.

Parker D., 1992, J. Chem. Soc., Chem. Commun. 1441−1443.

Moi M. K., 1988, J. Am. Chem. Soc., 110

Takenouchi K., 1993, J. Org. Chem., 58

McMurray T. J., 1998, J. Med. Chem., 41

Goeckeler W. F., 1987, J. Nucl. Med., 28

Goeckeler W. F., 1986, 153Sm radiotherapeutic bone agents. Nucl. Med. Biol. 13, 479−482

Kim W. D., 1995, Relaometry, luminescence measurements, electronphorisis, and animal biodistribution of lanthanide(III) complexes of some polyaza macrocyclic acetates containing pyridine. Inorg. Chem. 34, 2233−2243

Atkins H. L., 1993, Biodistribution of Sn 117m(4+)DTPA for palliative therapy of painful osseous metastasis. Radiology 186, 279−283

Kodama, M., Koike, T., Mahatma, A. B., and Kimara, E. (1991) Thermodynamic and kinetic studies of lanthanide complexes of 1,4,7,10,13-pentaazacyclopentadecane-N,N‘,N‘ ‘,N‘ ‘‘,N‘ ‘‘ ‘-pentaacetic acid and 1,4,7,10,13,16-hexaazacyclooctaadecane-N,N‘,N‘ ‘,N‘ ‘‘,N‘ ‘‘ ‘,N‘ ‘‘ ‘‘-hexaaacetic acid.Inorg. Chem. 31, 1270−1273.

Garrett T. M., 1991, J. Am. Chem. Soc., 113, 10.1021/ja00008a027

Scarrow R. C., 1991, Iron(III) coordination chemistry of linear dihydroxyserine compounds derived from enterobactin. Inorg. Chem. 30, 900−906

Stack T. D. P., 1992, J. Am. Chem. Soc., 114

Karpishin T. B., 1993, J. Am. Chem. Soc., 115

Karpishin T. B., 1993, J. Am. Chem. Soc., 115

Hider R. C., 1991, Clinically useful chelators of tripositive elements. Prog. Med. Chem. 28, 41−173, and references therein

Hider R. C., 1991, Iron chelating agetns in medicine. The application of bidentate hydroxypyridin-4-ones. Perspect. Bioinorg. Chem. 1, 209−253, and references therein

Orvig C., 1993, Coordination Chemistry of Aluminum

Gopalan A. S., 1992, J. Chem. Soc., Chem. Commun. 1266−1268.

Holmes R. A., 1992, Semin. Nucl. Med., 22, 45, 10.1016/S0001-2998(05)80156-4

Ketring A. R., 1987, 153Sm-EDTMP and 186Re−HEDP as bone therapeutic radiopharmaceuticals. Nucl. Med. Biol. 14, 223−232

Bayouth J. E., 1995, Med. Phys., 22, 11, 10.1118/1.597491

Bayouth J. E., 1995, J. Nucl. Med., 36

Lever S. Z., 1990, Inorg. Chim. Acta, 176, 10.1016/S0020-1693(00)84842-2

Marchi A., 1992, J. Chem. Soc., Dalton Trans. 1485−1490.

Anderson C. J., 1994, N,N‘-Ethylene-di-l-cysteine (EC) complexes of Ga(III) and In(III):  molecular modeling, thermodynamic stability and in vivo studies. Nucl. Med. Biol. 22, 165−173

Ma R., 1995, Inorg. Chim. Acta, 236, 82

Li Y. J., 1996, N,N‘-Ethylenedi-l-cysteine (EC) and it metal complexes:  synthesis, characterization, crystal structures, and equalibrium constants. Inorg. Chem. 35, 404−414

Sun Y., 1996, J. Med. Chem., 39

Sun Y., 1995, N,N‘-Bis(2-mercaptoethyl)ethylenediamine-N,N‘-diacetic acid

Hancock R. D., 1988, The chelate, cryptate, and macrocyclic effects. Comments Inorg. Chem. 6, 237−284

Hancock R. D., 1989, Chem. Rev., 89, 10.1021/cr00098a011

Hancock R. D., 1994, Coord. Chem. Rev., 133, 65

Lecomte C., 1997, Prediction of the coordination scheme of lanthanide N-tetrasubstituted tetraazamacrocycles:  an X-ray crystallography and molecular modeling study. Inorg. Chem. 36, 3827−3838

Meyer M., 1997, J. Am. Chem. Soc., 119

Shanzer A., 1986, J. Am. Chem. Soc., 108, 10.1021/ja00284a026

Tor Y., 1992, J. Am. Chem. Soc., 114

Shanzer A., 1989, Receptor mapping with artificial siderophores. Pure Appl. Chem. 61, 1529−1534

Yakirevitch P., 1993, Chiral siderophore analogues:  ferrioxamines and their iron(III) coordination properties. Inorg. Chem. 32, 1779−1787

Dayan I., 1993, Chiral siderophore analogues:  ferrochrome. Inorg. Chem. 32, 1467−1475

Libman J., 1992, Israel J. Chem., 32, 40, 10.1002/ijch.199200005

Tor Y., 1992, J. Am. Chem. Soc., 114

Liu S., 1993, Hexadentate N3O3 amine phenol ligands for group 13 Metal Ions:  Evidence for intrastrand and interstrand hrdrogen bonds in polydentate amine phenols. Inorg. Chem. 32, 4268−4276

Liu S., 1993, Gd

Liu, S., Wong, E., Karunaratne, V., Rettig, S. J., and Orvig, C. (1993) Highly flexible chelating ligands for group 13 metals. Design, synthesis and characterization of hexadentate (N3O3) tripodal amine phenol ligand complexes of aluminum, gallium and indium.Inorg. Chem.32, 1756−1765.

Liu, S., Rettig, S. J., and Orvig, C. (1992) Polydentate ligand chemistry of group 13 metals:  Effects of the size and donor-selectivity of metal ions on structures and properties of aluminum, gallium and indium complexes with potentially heptadentate (N4O3) amine phenol ligands.Inorg. Chem.31, 5400−5407.

Liu S., 1992, J. Am. Chem. Soc., 114

Renaud, F., Piguet, C., Bernardinelli, G., Hopfgartner, G., and Bünzli, J.C. G. (1999) C3-symmetrical lanthanide podates organized by intromolecular trifurcated hydrogen bonds.Chem. Commun.457−458.

Sundberg M. W., 1974, Selective binding of metal ions to macromolecules using bifunctional analogs of EDTA. Nature 250, 587−589

Krejcarek G. E., 1977, Covalent attachment of chelating groups of macromolecules. Biochem. Biophys. Res. Commun. 77, 581−588

Paik C. H., 1983, J. Nucl. Med., 24

Wu C., 1997, Radiochim. Acta, 79

Pippin C. G., 1992, Spectrophotometric method for the determination of a bifunctional DTPA ligand in DTPA-monoclonal antibody conjugates. Bioconjugate Chem. 3, 342−345

Brechbiel M. W., 1991, Backbone-substituted DTPA ligands for 90Y radioimmunotherapy. Bioconjugate Chem. 2, 187−194

Brechbiel M. W., 1986, Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies. Inorg. Chem. 25, 2772−2781

Wu C., 1997, Stereochemical influence on the stability of radio-metal complexes in vivo. Synthesis and evaluation of the four stereoisomers of 2-(p-nitrobenzyl)-trans-CyDTPA. Bioorg. Med. Chem. 5

Camera L., 1994, J. Nucl. Med., 35

Cummins C. H., 1991, A convenient synthesis of bifunctional chelating agents based on diethylenetriaminepentaacetic acid and their coordination chemistry with yttrium(III). Bioconjugate Chem. 2, 180−186

Williams M. A., 1993, J. Org. Chem., 58

Pederson C. J., 1967, J. Am. Chem. Soc., 89

Pietraszkiewicz M., 1992, J. Coord. Chem., 27

Bernhardt P. V., 1990, Coord. Chem. Rev., 104, 10.1016/0010-8545(90)80045-U

Bhula R., 1988, Coord. Chem. Rev., 91, 213, 10.1016/0010-8545(88)80014-6

Guerriero P., 1995, Coord. Chem. Rev., 139, 243, 10.1016/0010-8545(93)01105-7

Kaden T. A., 1999, Coord. Chem. Rev. 190−, 192

Richman J. E., 1974, J. Am. Chem. Soc., 96, 10.1021/ja00814a056

Kovacs Z., 1999, A convenient synthesis of 1,4,7,10,13-pentaazacyclopentadecane. Synth. Commun. 29, 2817−2822

Weisman G. R., 1996, J. Org. Chem., 61, 10.1021/jo9606665

Argese M., 1997, A process for the preparation of tetraazamacrocycles. PCT WO 97/49691

Argese M., 2000, Process for the preparation of tetraazamacrocycles. U.S. patent 6,013,793

Helps I. M., 1989, General routes for the synthesis of mono, di and tri-N-substituted derivatives of cyclam. Tetrahedron 45, 219−226

Dischino, D. D., Delaney, E. J., Emswiler, J. E., Gaughan, G. T., Prasad, J. S., Srivasrava, S. K., and Tweedle, M. F. (1991) Synthesis of nonionic gadolinium chelates useful as contrast agents for magnetic resonance imaging. 1,4,7-Tris(carboxymethyl)-10-substituted-1,4,7,10-tetraazacyclododecane and their corresponding gadolinium chelates.Inorg. Chem. 30, 1265−1269.

Kruper W. J., Jr., 1993, J. Org. Chem., 58

Trabaud C., 1998, Synthesis of new tetrakis N-substituted tetra-azamacrocycles. Synth. Commun. 28, 311−317

Mishra A. K., 1996, Tetrahedron Lett., 37, 10.1016/0040-4039(96)01727-3

Mailet M., 1998, Tetrahedron Lett., 39

Ruser G., 1990, Synthesis and evaluation of two new bifunctional carboxymethylated tetraazamacrocyclic chelating agents for protein labeling with indium-111. Bioconjugate Chem. 1, 345−349

Kline S. J., 1991, Bioconjugate Chem., 2, 31, 10.1021/bc00007a005

Bernard H., 1991, Tetrahedron Lett., 32, 10.1016/S0040-4039(00)74848-9

Anelli P. L., 1991, J. Chem. Soc., Chem. Commun. 1317−1318.

Guillaume D., 1998, Efficient one-pot synthesis of JM3100. Synth. Commun. 28, 2903−2906

Parker D., 1992, J. Chem. Soc., Chem. Commun. 1441−1443.

Cox J. L., 1990, J. Chem. Soc., Perkin Trans. 2567−2576.

Broan C. J., 1991, Perkin Trans. 87−99.

Norman T. J., 1995, J. Chem. Soc., Chem. Commun. 1877−1878.

Broan C. J., 1992, Synthesis of new macrocyclic aminophosphinic acid complexing agents and their C- and P-functionalized derivatives for protein linkage. Synthesis 63−68

Meares C. F., 1984, Metal chelates as probes of biological systems. Acc. Chem. Res. 17, 202−209

Meares C. F., 1986, Chelating agents for the binding of metal ions to antibodies. Nucl. Med. Biol. 13, 311−318

Moi M. K., 1985, Copper chelates as probes of biological systems:  stable copper complexes with macrocyclic bifunctional chelating agent. Anal. Chem. 148, 249−253

McCall M. J., 1990, Simplified method for conjugating macrocyclic bifunctional chelating agents to antibodies via 2-iminothiolane. Bioconjugate Chem. 1, 222−226

Deshpande S. V., 1990, J. Nucl. Med., 31

Moi M. K., 1988, J. Am. Chem. Soc., 110

Morphy J. R., 1988, J. Chem. Soc., Chem. Commun. 156−158.

Parker D., 1989, Implementation of macrocycle conjugated antibodies for tumor targeting. Pure Appl. Chem. 61, 1637−1641

Morphy J. R., 1990, J. Chem. Soc., Perkin Trans. 573−585.

Moreau P., 1997, synthesis of the bifunctional chelating agents 6-(4-aminobenzyl)-1,4,8,11-tetraazacyclotetradecane-N‘,N‘ ‘,N‘ ‘‘-tetraacetic acid (H2NBn-TETA). Synthesis 1010−1012

McMurry T. J., 1992, Convenient synthesis of bifunctional tetraaza macrocycles. Bioconjugate Chem. 3, 108−117

Mischra A. K., 1996, New J. Chem., 20

Rauk A., 1970, Engl. 9, 400−414.

Konings M. S., 1990, Gadolinium complexation by a new DTPA-amide ligand. Amide oxygen coordination. Inorg. Chem. 29, 1488−1491

Bligh S. W. A., 1995, Neutral gadolinium(III) complexes of bulky octadentate dtpa derivatives as potential contrast agent for magnetic resonance imaging. Polyhedron 14, 567−569

Maecke H. R., 1989, J. Nucl. Med., 30

Jenkins B. G., 1988, Solution structure and dynamics of lanthanide(III) complexes of diethylenetriaminepentaacetic acid:  two-dimensional NMR analysis. Inorg. Chem. 27, 4730−4738

Peters J. A., 1988, Multinuclear NMR study of lanthanide(III) complexes of diethylenetriaminepentaacetate. Inorg. Chem. 27, 4686−4691

Aime S., 1997, Inorg. Chim. Acta, 254, 70, 10.1016/S0020-1693(96)05139-0

Geraldes, C. F. G. C., Urbano, A. M., Hoefnagel, M. A., and Peters, J. A. (1993) Multinuclear magnetic resonance study of the structure and dynamics of lanthanide(III) complexes of bis(proplamide) of diethylenetriaminepentaacetic acid in aqueous solution.Inorg. Chem. 32,2426−2432.

Rizkalla E. N., 1993, PMR, and fluoresence studies for the complexation of trivalent lanthanides, Ca2+, Cu2+, and Zn2+ by diethylenetriaminepentaacetic acid bis(methylamide). Inorg. Chem. 32, 582−586.

Geraldes C. F. G. C., 1991, J. Chem. Soc., Chem. Commun. 656−658.

Aime S., 1990, Inorg. Chim. Acta, 177, 10.1016/S0020-1693(00)91917-0

Lammers H., 1997, Structures and dynamics of lanthanide(III) complexes of suggar-based DTPA-bis(amides) in aqueous solution:  a multinuclear NMR study. Inorg. Chem. 36, 2527−2538

Liu S., 2001, Isomerism and solution dynamics of 90Y-labeled DTPA-Biomolecule conjugates. Bioconjugate Chem. 12 , 84−91

Uggeri, F., Aime, S., Anelli, P. L., Botta, M., Brocchetta, M., de Haën, C., Ermondi, G., Grandi, M., and Paoli, P. (1995) Novel contrast agents for magnetic resonance imaging. Synthesis and characterization of the ligand BOPTA and its Ln(III) complexes (Ln = Gd, La, Lu). X-Ray structure of disodium (TPS-9−145337286-C−S)-[4-carboxy-5,8,11-tris(carboxymethyl)-1-phenyl-2-oxa-5,8,11-triazatridecan-13-oato(5-)]gadolinate(2-) in a mixture with its enatiomer.Inorg. Chem. 34, 633−642.

Brittain H. G., 1984, Luminescence and NMR studies of the conformational isomers of lanthanide 33 complexes with optically active polyaza polycarboxylic macrocycles. Inorg. Chem. 23, 4459−4466

Howard, J. A. K., Kenwright, A. M., Moloney, J. M., Parker, D., Port, M., Navet, M., Rousseau, O., and Woods, M. (1998) Structure and dynamics of all of the stereoisomers of europium complexes of tetra(carboxyethyl)derivatives of dota:  ring inversion is decoupled from cooperative arm rotation in theRRRRandRRRSisomers.Chem Commun.1381−1382.

Kang, S. I., Ranganathan, R. S., Emswiler, J. E., Kumar, K., Gougoutas, J. Z., Malley, M. F., and Tweedle, M. F. (1993) Synthesis, characterization, and crystal structure of gadolinium(III) chelate of (1R, 4R, 7R)-α,α‘,α‘ ‘-trimethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3MA).Inorg. Chem. 32, 2912−2918.

Spirlet, M.R., Rebizant, J., Desreux, J. F., and Loncin, M.F. (1984) Crystal and molecular structure of sodium aquo(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetato)europate(III) tetrahydrate, Na+(EuDOTA·H2O)-.4H2O, and its relevance to NMR studies of the conformational behavior of the lanthanide complexes formed by the macrocyclic ligand DOTA.Inorg. Chem. 23, 359−363.

Chang C. A., 1993, Gd) and Na[(DOTA)] (M = Fe, Y, Gd). Inorg. Chem. 32, 3501−3508.

Desreux J. F., 1980, Nuclear magnetic resonance spectroscopy of lanthanide complexes with tetraacetic tetraaza macrocycle. Unusual conformation properties. Inorg. Chem. 19, 1319−1324

Aime S., 1992, NMR study of solution structures and dynamics of lanthanide(III) complexes of DOTA. Inorg. Chem. 31, 4291−4299

Aime, S., Anelli, P. L., Botta, M., Fedeli, F., Ermondi, G., Grandi, M., Paoli, P., and Uggeri, F. (1992) Synthesis, characterization, and1/T1NMRD profiles of gadolinium(III) complexes of monoamide derivatives of DOTA-like ligands. X-Ray structure of the 10-[2-[[2-hydroxy-1-(hydroxymethyl)ethyl]amino]-1-(phenylmethoxy)methyl]2-oxoethyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid-gadolinium(III) complex.Inorg. Chem. 31, 2422−2428.

Aime S., 1996, Gd, Ho, Yb) containing a p-nitrophenyl substituent. Inorg. Chem. 35, 2726−2736.

Sherry A. D., 1997, J. Alloys Compd., 249

Kim W. D., 1997, NMR studies of the lanthanide(III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methanephosphonic acid mono(2‘,2‘,2‘-trifluoroethyl) ester). Inorg. Chem. 36, 4128−4134

Aime S., 1997, J. Chem. Soc., Dalton Trans. 3623−3636.

Sherry A. D., 1989, Synthesis and characterization of the gadolinium(3+) complex of DOTA-propylamide:  a model DOTA-protein conjugate. Inorg. Chem. 28, 620−622

Sieving P. F., 1990, Bioconjugate Chem., 1, 72, 10.1021/bc00001a008

Lewis, M. R., Raubitschek, A., and Shively, J. E. (1994) A facile, water soluble method for modification of proteins with DOTA. Use of elevated temperature and optimized pH to achieve high specific activity and high chelate stability in radiolabeled immunoconjugates.Bioconjugate Chem.5, 565−576.

Lewis M. R., 1998, Bioconjugate Chem., 9, 86, 10.1021/bc970136v

Corson D. T., 2000, Efficient multigram synthesis of the bifunctional chelating agent (S)-1-p-isothiocyanatobenzyl-diethylene-tetraaminepentaacetic acid. Bioconjugate Chem. 11, 292−299

DeNardo S. J., 1995, J. Nucl. Med., 36

Stimmel J. B., 1995, Yttrium-90 chelation properties of tetraazatetraacetic acid macrocycles, diethylenetriaminepentaacetic acid analogues, and a novel terpyridine acyclic chelator. Bioconjugate Chem. 6, 219−225

Stimmel J. B., 1998, Sammarium-153 and lutetium-177 chelation properties of selected macrocyclic and cyclic ligands. Nucl. Med. Biol. 25, 117−125

Szilágyi E., 2000, Inorg. Chim. Acta, 298, 10.1016/S0020-1693(99)00467-3

Aime S., 1997, J. Am. Chem. Soc., 119, 10.1021/ja963743m

Keire D. A., 1999, NMR studies of the metal loading kinetics and acid−base chemistry of DOTA and butylamide-DOTA. Bioconjugate Chem. 10, 454−463

Delgado R., 1982, Metal complexes of cyclic tetra-azatetraacetic acids. Talanta 29, 815−822

Kumar K., 1994, Synthesis, stability, and structure of gadolinium(III) and yttrium(III) macrocyclic poly(amino carboxylates). Inorg. Chem. 33, 3567−3575

Kumar K., 1993, Equilibrium and kinetic studies of lanthanide complexes of macrocyclic polyamino carboxylates. Inorg. Chem. 32, 587−593

Clarke E. T., 1991, Inorg. Chim. Acta, 190, 36

Clarke E. T., 1991, Inorg. Chim. Acta, 190, 46

Kukis D. L., 1998, J. Nucl. Med., 39

Dischino, D. D., Delaney, J. J., Emswiler, J. E., Gaughan, G. T., Prasad, J. S., Srivasrava, S. K., and Tweedle, M. F. (1991) Synthesis of nonionic gadolinium chelates useful as contrast agents for magnetic resonance imaging:  1,4,7,tris(carboxymethyl)-10-substituted-1,4,7,10-tetraazacyclododecanes and their corresponding gadolinium chelates.Inorg. Chem. 30, 1265−1269.

Kumar K., 1994, Effect of ligand basicity on the formation and dissociation equilibria and kinetics of Gd3+ complexes of macrocyclic polyamino carboxylates. Inorg. Chem. 33, 3823−3829

Kumar K., 1993, Macrocyclic polyaminocarboxylate complexes of lanthanide as magnetic resonance imaging contrast agents. Pure Appl. Chem. 65, 515−520

Kumar K., 1995, Cu2+, and Zn2+ complexes of macrocyclic polyamino carboxylates. Inorg. Chem. 34, 6472−6480.

Wang, X., Jin, T., Combin, V., Lopez-Mut, A., Merciny, E., and Desreux, J. F. (1992) A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylaic MRI contrast agent.Inorg. Chem. 31, 1095−1099.

Jang Y. H., 1999, J. Am. Chem. Soc., 121