Bicycling crashes on streetcar (tram) or train tracks: mixed methods to identify prevention measures

BMC Public Health - Tập 16 - Trang 1-10 - 2016
Kay Teschke1, Jessica Dennis2, Conor C. O. Reynolds3, Meghan Winters4, M. Anne Harris2,5
1School of Population and Public Health, University of British Columbia, Vancouver, Canada
2Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
3Institute for Resources, Environment, and Sustainability, University of British Columbia, Vancouver, Canada
4Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
5School of Occupational and Public Health, Ryerson University, Toronto, Canada

Tóm tắt

Streetcar or train tracks in urban areas are difficult for bicyclists to negotiate and are a cause of crashes and injuries. This study used mixed methods to identify measures to prevent such crashes, by examining track-related crashes that resulted in injuries to cyclists, and obtaining information from the local transit agency and bike shops. We compared personal, trip, and route infrastructure characteristics of 87 crashes directly involving streetcar or train tracks to 189 crashes in other circumstances in Toronto, Canada. We complemented this with engineering information about the rail systems, interviews of personnel at seven bike shops about advice they provide to customers, and width measurements of tires on commonly sold bikes. In our study, 32 % of injured cyclists had crashes that directly involved tracks. The vast majority resulted from the bike tire being caught in the rail flangeway (gap in the road surface alongside rails), often when cyclists made unplanned maneuvers to avoid a collision. Track crashes were more common on major city streets with parked cars and no bike infrastructure, with left turns at intersections, with hybrid, racing and city bikes, among less experienced and less frequent bicyclists, and among women. Commonly sold bikes typically had tire widths narrower than the smallest track flangeways. There were no track crashes in route sections where streetcars and trains had dedicated rights of way. Given our results, prevention efforts might be directed at individual knowledge, bicycle tires, or route design, but their potential for success is likely to differ. Although it may be possible to reach a broader audience with continued advice about how to avoid track crashes, the persistence and frequency of these crashes and their unpredictable circumstances indicates that other solutions are needed. Using tires wider than streetcar or train flangeways could prevent some crashes, though there are other considerations that lead many cyclists to have narrower tires. To prevent the majority of track-involved injuries, route design measures including dedicated rail rights of way, cycle tracks (physically separated bike lanes), and protected intersections would be the best strategy.

Tài liệu tham khảo

Maibach E, Steg L, Anable J. Promoting physical activity and reducing climate change: Opportunities to replace short car trips with active transportation. Prev Med. 2009;49:326–7. Litman T. Rail transit in America: a comprehensive evaluation of benefits. Victoria Transport Policy Institute; 2015. http://www.vtpi.org/railben.pdf. Accessed 1 Feb 2016. Cameron IC, Harris NJ, Kehoe NJS. Tram-involved injuries in Sheffield. Inj. 2001;32:275–7. Harris MA, Reynolds CCO, Winters M, Cripton PA, Shen H, Chipman M, Cusimano MD, Babul S, Brubacher JR, Friedman SM, Hunte G, Monro M, Vernich L, Teschke K. Comparing the effects of infrastructure on bicycling injury at intersections and non-intersections using a case-crossover design. Inj Prev. 2013;19:303–10. Papoutsi S, Martinolli L, Braun CT, Exadaktylos AK. E-bike injuries: Experience from an urban emergency department—A retrospective study from Switzerland. Emerg Med Int. 2014;2014:850236. doi:10.1155/2014/850236. Teschke K, Frendo T, Shen H, Harris MA, Reynolds CCO, Cripton PA, Brubacher JR, Cusimano MD, Friedman SM, Hunte G, Monro M, Vernich L, Babul S, Chipman M, Winters M. Bicycling crash circumstances vary by route type: a cross-sectional analysis. BMC Public Health. 2014;14:1205. Teschke K, Harris MA, Reynolds CCO, Winters M, Babul S, Chipman M, Cusimano MD, Brubacher J, Friedman SM, Hunte G, Monro M, Shen H, Vernich L, Cripton PA. Route infrastructure and the risk of injuries to bicyclists: A case-crossover study. Am J Public Health. 2012;102:2336–43. Vandenbulcke G, Thomas I, Int PL. Predicting cycling accident risk in Brussels: a spatial case–control approach. Accid Anal Prev. 2014;62:341–57. Deunk J, Harmsen AM, Schonhuth CP, Bloemers FW. Injuries due to Wedging of Bicycle Wheels in on-Road Tram Tracks. Arch Trauma Res. 2014;3:3–5. Bicyclists’ Injuries and the Cycling Environment Study, Cycling in Cities Research Program. Interview Form. 2008. http://cyclingincities-spph.sites.olt.ubc.ca/files/2011/10/InterviewFormFinal.pdf. Accessed 1 Feb 2016. Bicyclists’ Injuries and the Cycling Environment Study, Cycling in Cities Research Program. Site Observation Form. 2008. http://cyclingincities-spph.sites.olt.ubc.ca/files/2011/10/SiteObservationFormFinal.pdf. Accessed 1 Feb 2016. Shu X, Wilson N. Use of guard/girder/restraining rails. TCRP Res Results Digest. 2007;82:1–37. http://www.tcrponline.org/PDFDocuments/TCRP_RRD_82.pdf. Accessed 19 Jul 2016. Wikipedia contributors. Rail profile. Wikipedia, The Free Encyclopedia. 2016. https://en.wikipedia.org/wiki/Rail_profile#North_America Accessed 20 Apr 2016. Schepers JP. A safer road environment for cyclists. TU Delft, Delft University of Technology; 2013. http://repository.tudelft.nl/assets/uuid:fe287480-25cc-4b7d-a6d6-1ca2b5976331/Paul_Schepers1.pdf. Accessed 18 Apr 2016. Cripton PA, Shen H, Brubacher JR, et al. Severity of urban cycling injuries and the relationship with personal, trip, route and crash characteristics: analyses using four severity metrics. BMJ Open. 2015;5:e006654. doi:10.1136/bmjopen-2014-006654. Ledsham T, Liu G, Watt E, Wittmann K. Mapping Cycling Behaviour in Toronto, Toronto Cycling Think and Do Tank. 2013. http://www.torontocycling.org/uploads/1/3/1/3/13138411/mapping_cycling_behaviour_in_toronto_final_23_may_printer_tl.pdf. Accessed 15 Jan 2016. Ontario Ministry of Transportation. Cycling Skills: Ontario’s Guide to Safe Cycling. Undated. http://www.mto.gov.on.ca/english/safety/pdfs/cycling-skills.pdf. Accessed 15 Jan 2016. Alta Planning and Design. Bicycle Interactions and Streetcars: Lessons Learned and Recommendations. 2008. http://www.altaplanning.com/wp-content/uploads/Bicycle_Streetcar_Memo_ALTA.pdf Accessed 1 Feb 2016. Wagenbuur M. Junction design in the Netherlands, Bicycle Dutch. https://bicycledutch.wordpress.com/2014/02/23/junction-design-in-the-netherlands/. Accessed24 Jan 2016. Vision Zero Initiative. http://www.visionzeroinitiative.com Accessed 19 July 2016. World Health Organization. International classification of diseases: 10th revision. 2016. http://www.who.int/classifications/icd/en/. Accessed 18 Apr 2016.