Biconservative Hypersurfaces in Euclidean 5-Space

Bulletin of the Iranian Mathematical Society - Tập 45 - Trang 1117-1133 - 2019
Ram Shankar Gupta1
1University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, India

Tóm tắt

We prove that every biconservative hypersurface M in $$\mathbb {E}^5$$ with constant norm of second fundamental form has constant mean curvature.

Tài liệu tham khảo

Arvanitoyeorgos, A., Defever, F., Kaimakamis, G., Papantoniou, V.: Biharmonic Lorentzian hypersurfaces in \(E_{1}^{4}\). Pac. J. Math. 229(2), 293–305 (2007) Chen, B.Y.: Total Mean Curvature and Submanifolds of Finite Type, 2nd edn. World Scientific, Hackensack (2015) Deepika, Gupta, R.S.: Biharmonic hypersurfaces in \(\mathbb{E}^5\) with zero scalar curvature. Afr. Diaspora J. Math. 18(1), 12–26 (2015) Deepika, Gupta, R.S., Sharfuddin, A.: Biharmonic hypersurfaces with constant scalar curvature in \(E^5_s\). Kyungpook Math. J. 56, 273–293 (2016) Hilbert, D.: Die Grundlagen der Physik. Math. Ann. 92, 1–32 (1924) Jiang, G.Y.: The conservation law for 2-harmonic maps between Riemannian manifolds. Acta Math. Sin. 30, 220–225 (1987) Dimitric, I.: Submanifolds of \(E^{n}\) with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sin. 20, 53–65 (1992) Eells, J., Sampson, J.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964) Magid, M.A.: Lorentzian isoparametric hypersurfaces. Pacific J. Math. 118, 165–197 (1985) Turgay, N.C.: H-hypersurfaces with three distinct principal curvatures in the Euclidean spaces. Annali di Matematica 194, 1795–1807 (2015) Gupta, R.S.: On biharmonic hypersurfaces in Euclidean space of arbitrary dimension. Glasgow Math. J. 57, 633–642 (2015) Gupta, R.S.: Biharmonic hypersurfaces in \(E_{s}^{5}\), An. St. Univ. Al. I. Cuza, Tomul LXII, 2016, f. 2, vol. 2, 585–593 Gupta, R.S.: Biharmonic hypersurfaces in \(\mathbb{E}^6\) with constant scalar curvature. Int. J. Geom. 5(2), 39–50 (2016) Gupta, R.S.: biconservative Lorentz hypersurfaces in \(\mathbb{E}^{n+1}_1\) with complex eigenvalues, (2017). arXiv:1706.00783v2 Montaldo, S., Oniciuc, C., Ratto, A.: Proper biconservative immersions into the Euclidean space. Annali di Matematica 195, 403–422 (2016) Sasahara, T.: Tangentially biharmonic Lagrangian H-umbilical submanifolds in complex space forms. Abh. Math. Semin. Univ. Hambg. 85, 107–123 (2015) Hasanis, T., Vlachos, T.: Hypersurfaces in \(\mathbb{E}^{4}\) with harmonic mean curvature vector field. Math. Nachr. 172, 145–169 (1995)