Bias correction for the least squares estimator of Weibull shape parameter with complete and censored data

Reliability Engineering & System Safety - Tập 91 - Trang 930-939 - 2006
L.F. Zhang1, M. Xie1, L.C. Tang1
1Department of Industrial and Systems Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

Tài liệu tham khảo

Hossain, 2003, Comparison of estimation methods for Weibull parameters: complete and censored samples, J Stat Comput Simul, 73, 145, 10.1080/00949650215730 Hisada, 2002, Reliability tests for Weibull distribution with varying shape-parameter, based on complete data, IEEE Trans Reliab, 51, 331, 10.1109/TR.2002.801845 Keats, 2000, A study of the effects of mis-specification of the Weibull shape parameter on confidence bounds based on the Weibull-to-exponential transformation, Qual Reliab Eng Int, 16, 27, 10.1002/(SICI)1099-1638(200001/02)16:1<27::AID-QRE284>3.0.CO;2-B Xie, 2000, More on the mis-specification of the shape parameter with Weibull-to-exponential transformation, Qual Reliab Eng Int, 16, 281, 10.1002/1099-1638(200007/08)16:4<281::AID-QRE338>3.0.CO;2-N Montanari, 1997, In search of convenient techniques for reducing bias in the estimation of Weibull parameter for uncensored tests, IEEE Trans Dielect Electr Insul, 4, 306, 10.1109/94.598287 Jacquelin, 1993, Generalization of the method of maximum likelihood, IEEE Trans Dielect Electr Insul, 28, 65, 10.1109/14.192241 Ross, 1994, Formulas to describe the bias and standard deviation of the ML estimated weibull shape parameter, IEEE Trans Dielect Electr Insul, 1, 247, 10.1109/94.300257 Ross, 1996, Bias and standard deviation due to Weibull parameter estimation for small date sets, IEEE Trans Dielect Electr Insul, 3, 28, 10.1109/94.485512 Hirose, 1999, Bias correction for the maximum likelihood estimates in the two parameter Weibull distribution, IEEE Trans Dielect Electr Insul, 6, 66, 10.1109/94.752011 Cacciari, 1996, Comparison of maximum likelihood unbiasing methods for the estimation of the Weibull parameters, IEEE Trans Dielect Electr Insul, 3, 18, 10.1109/94.485511 Montanari, 1997, Optimum estimators for the Weibull distribution of censored data: singly-censored tests, IEEE Trans Dielect Electr Insul, 4, 462, 10.1109/94.625364 Engelhardt, 1977, Simplified statistical procedures for the Weibull or extreme-value distribution, Technometrics, 19, 323, 10.2307/1267703 White, 1969, The moments of log-Weibull order statistics, Technometrics, 11, 65, 10.2307/1267267 Hung, 2001, Weighted least squares estimation of the shape parameter of the Weibull distribution, Qual Reliab Eng Int, 17, 467, 10.1002/qre.423 Lu, 2004, A note on weighted least-squares estimation of the shape parameter of the Weibull distribution, Qual Reliab Eng Int, 20, 579, 10.1002/qre.570 Yang, 2002, Efficient estimation of the Weibull shape parameter based on a modified profile likelihood, J Stat Comput Simul, 73, 115, 10.1080/00949650215729 Fothergill, 1990, Estimating the cumulative probability of failure data points to be plotted on weibull and other probability paper, IEEE Trans Electr Insul, 25, 489, 10.1109/14.55721 Bernard, 1953, The plotting of observations on probability paper, Stat Neerl, 7, 163 Herd GR. Estimation of reliability from incomplete data. Proceedings of the sixth international symposium on reliability and quality control; 1960. Johnson, 1964 Nelder, 1965, A simplex method for function minimization, Comput J, 7, 308, 10.1093/comjnl/7.4.308