Bi-criteria Pareto-scheduling on a single machine with due indices and precedence constraints

Discrete Optimization - Tập 25 - Trang 105-119 - 2017
Yuan Gao1, Jinjiang Yuan1
1School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China

Tài liệu tham khảo

T’kindt, 2006 Hoogeveen, 2005, Multicriteria scheduling, European J. Oper. Res., 167, 592, 10.1016/j.ejor.2004.07.011 Perez-Gonzalez, 2014, A common framework and taxonomy for multicriteria scheduling problem with interfering and competing jobs: Multi-agent scheduling problems, European J. Oper. Res., 235, 1, 10.1016/j.ejor.2013.09.017 Agnetis, 2014 Agnetis, 2004, Scheduling problems with two competing agents, Oper. Res., 52, 229, 10.1287/opre.1030.0092 Hoogeveen, 1996, Single machine scheduling to minimize a function of two or three maximum cost criteria, J. Algorithms, 21, 415, 10.1006/jagm.1996.0051 Gao, 2015, Pareto minimizing total completion time and maximum cost with positional due indices, J. Oper. Res. Soc. China, 3, 381, 10.1007/s40305-015-0083-1 Gao, 2015, A note on Pareto minimizing total completion time and maximum cost, Oper. Res. Lett., 43, 80, 10.1016/j.orl.2014.12.001 Lenstra, 1978, Complexity of scheduling under precedence constraints, Oper. Res., 26, 22, 10.1287/opre.26.1.22 Lawler, 1973, Optimal sequencing of a single machine subject to precedence constraints, Manage. Sci., 19, 544, 10.1287/mnsc.19.5.544 Zhao, 2015, Rescheduling to minimize the maximum lateness under the sequence disruptions of original jobs, Asia-Pac. J. Oper. Res. Geng, 2015, Pareto optimization scheduling of family jobs on a p-batch machine to minimize makespan and maximum lateness, Theoret. Comput. Sci., 570, 22, 10.1016/j.tcs.2014.12.020 He, 2014, Single machine bicriteria scheduling with equal-length jobs to minimize total weighted completion time and maximum cost, 4OR-Q. J. Oper. Res., 12, 87, 10.1007/s10288-013-0244-1