Beyond the map: evidencing the spatial dimension of health inequalities
Tóm tắt
Spatial inequalities in health result from different exposures to health risk factors according to the features of geographical contexts, in terms of physical environment, social deprivation, and health care accessibility. Using a common geographical referential, which combines indices measuring these contextual features, could improve the comparability of studies and the understanding of the spatial dimension of health inequalities. We developed the Geographical Classification for Health studies (GeoClasH) to distinguish French municipalities according to their ability to influence health outcomes. Ten contextual scores measuring physical and social environment as well as spatial accessibility of health care have been computed and combined to classify French municipalities through a K-means clustering. Age-standardized mortality rates according to the clusters of this classification have been calculated to assess its effectiveness. Significant lower mortality rates compared to the mainland France population were found in the Wealthy Metropolitan Areas (SMR = 0.868, 95% CI 0.863–0.873) and in the Residential Outskirts (SMR = 0.971, 95% CI 0.964–0.978), while significant excess mortality were found for Precarious Population Districts (SMR = 1.037, 95% CI 1.035–1.039), Agricultural and Industrial Plains (SMR = 1.066, 95% CI 1.063–1.070) and Rural Margins (SMR = 1.042, 95% CI 1.037–1.047). Our results evidence the comprehensive contribution of the geographical context in the constitution of health inequalities. To our knowledge, GeoClasH is the first nationwide classification that combines social, environmental and health care access scores at the municipality scale. It can therefore be used as a proxy to assess the geographical context of the individuals in public health studies.
Tài liệu tham khảo
The Marmot review. Fair society, healthy lives: the Marmot review. London, Royaume-Uni de Grande-Bretagne et d’Irlande du Nord; 2010, p. 242.
Thomson K, Hillier-Brown F, Todd A, McNamara C, Huijts T, Bambra C. The effects of public health policies on health inequalities in high-income countries: an umbrella review. BMC Public Health. 2018;18(1):869.
Marmot M. Social determinants of health inequalities. Lancet. 2005;365(9464):1099–104.
Santana P, Costa C, Freitas Â, Stefanik I, Quintal C, BanaCosta C, et al. Atlas of population health in European Union regions. Coimbra: Imprensa da Universidade de Coimbra; 2017. p. 263.
Arcaya MC, Tucker-Seeley RD, Kim R, Schnake-Mahl A, So M, Subramanian SV. Research on neighborhood effects on health in the United States: a systematic review of study characteristics. Soc Sci Med. 2016;168:16–29.
Trugeon A, Thomas N, Michelot F, Fédération nationale des observatoires régionaux de santé (France). Inégalités socio-sanitaires en France : de la région au canton. Issy-les-Moulineaux : Masson. 2010. (Abrégés (Paris. 1971), ISSN 0768-1992).
Vigneron E, Cartier N (1975). Les inégalités de santé dans les territoires français : état des lieux et voies de progrès. Issy-les-Moulineaux: Elsevier Masson; 2011.
Ambient (outdoor) air quality and health, WHO, 2018, available https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. Accessed 12 Sep 2019.
Weltgesundheitsorganisation, Regionalbüro für Europa. Environmental noise guidelines for the European Region. 2018.http://www.euro.who.int/en/publications/abstracts/environmental-noise-guidelines-for-the-european-region-2018. Accessed 13 Mar 2019.
Roh T, Lynch CF, Weyer P, Wang K, Kelly KM, Ludewig G. Low-level arsenic exposure from drinking water is associated with prostate cancer in Iowa. Environ Res. 2017;159:338–43.
Savoye I, Olsen CM, Whiteman DC, Bijon A, Wald L, Dartois L, et al. Patterns of ultraviolet radiation exposure and skin cancer risk: the E3N-SunExp Study. J Epidemiol. 2018;28(1):27–33.
Rojas-Rueda D, Nieuwenhuijsen MJ, Gascon M, Perez-Leon D, Mudu P. Green spaces and mortality: a systematic review and meta-analysis of cohort studies. Lancet Planet Health. 2019;3(11):e469–77.
Porcherie M, Lejeune M, Gaudel M, Pommier J, Faure E, Heritage Z, et al. Urban green spaces and cancer: a protocol for a scoping review. BMJ Open. 2018;8(2):e018851.
Chaix B, Bean K, Daniel M, Zenk SN, Kestens Y, Charreire H, et al. Associations of supermarket characteristics with weight status and body fat: a multilevel analysis of individuals within supermarkets (RECORD study). PLoS ONE. 2012;7(4):e32908.
Carstairs V, Morris R. Deprivation: explaining differences in mortality between Scotland and England and Wales. BMJ. 1989;299(6704):886–9.
Townsend P. Deprivation. J Soc Policy. 1987;16(2):125–46.
Pornet C, Delpierre C, Dejardin O, Grosclaude P, Launay L, Guittet L, et al. Construction of an adaptable European transnational ecological deprivation index: the French version. J Epidemiol Commun Health. 2012;66(11):982–9.
Rey G, Jougla E, Fouillet A, Hémon D. Ecological association between a deprivation index and mortality in France over the period 1997–2001: variations with spatial scale, degree of urbanicity, age, gender and cause of death. BMC Public Health. 2009;22(9):33.
Riva M, Gauvin L, Barnett TA. Toward the next generation of research into small area effects on health: a synthesis of multilevel investigations published since July 1998. J Epidemiol Commun Health. 2007;61(10):853–61.
Tanke MAC, Ikkersheim DE. A new approach to the tradeoff between quality and accessibility of health care. Health Policy. 2012;105(2–3):282–7.
Korda RJ, Butler JR, Clements MS, Kunitz SJ. Differential impacts of health care in Australia: trend analysis of socioeconomic inequalities in avoidable mortality. Int J Epidemiol. 2007;36(1):157–65.
Guagliardo MF. Spatial accessibility of primary care: concepts, methods and challenges. Int J Health Geogr. 2004;3(1):3.
Cramb SM, Mengersen KL, Turrell G, Baade PD. Spatial inequalities in colorectal and breast cancer survival: premature deaths and associated factors. Health Place. 2012;18(6):1412–21.
Abel GA, Barclay ME, Payne RA. Adjusted indices of multiple deprivation to enable comparisons within and between constituent countries of the UK including an illustration using mortality rates. BMJ Open. 2016;6(11):e012750.
Bertin M, Chevrier C, Pelé F, Serrano-Chavez T, Cordier S, Viel J-F. Can a deprivation index be used legitimately over both urban and rural areas? Int J Health Geogr. 2014;14(13):22.
Pascal M, Corso M, Chanel O, Declercq C, Badaloni C, Cesaroni G, et al. Assessing the public health impacts of urban air pollution in 25 European cities: results of the Aphekom project. Sci Total Environ. 2013;1(449):390–400.
Camille C, Ghislaine B, Yolande E, Clément P, Lucile M, Camille P, et al. Residential proximity to agricultural land and risk of brain tumor in the general population. Environ Res. 2017;159:321–30.
Temam S, Varraso R, Pornet C, Sanchez M, Affret A, Jacquemin B, et al. Ability of ecological deprivation indices to measure social inequalities in a French cohort. BMC Public Health. 2017;17(1):956.
Lucas-Gabrielli V, Mangeney C. How can accessibility measures be improved to better target underserved areas? Rev Epidemiol Sante Publique. 2019;67(Suppl 1):S25–32.
Barlet, Coldefy M., Collin C., Lucas-Gabrielli V. L’Accessibilité potentielle localisée (APL) : une nouvelle mesure de l’accessibilité aux soins appliquée aux médecins généralistes libéraux en France. Institut de Recherche et Documentation en Economie de la Santé. (I.R.D.E.S.). Paris. FRA, editor. Paris : Irdes; 2012. (Irdes Working Document ; 51). http://www.irdes.fr/EspaceRecherche/DocumentsDeTravail/DT51AccessibilitePotentielleLocalisee.pdf.
Reibel M. Classification approaches in neighborhood research: introduction and review. Urban Geogr. 2011;32(3):305–16.
Rokach L, Maimon O. Clustering Methods. In: Maimon O, Rokach L, editors. Data mining and knowledge discovery handbook. Boston: Springer; 2005. p. 321–52. https://doi.org/10.1007/0-387-25465-X_15.
www.insee.fr.
Green MA, Daras K, Davies A, Barr B, Singleton A. Developing an openly accessible multi-dimensional small area index of ‘Access to Healthy Assets and Hazards’ for Great Britain, 2016. Health Place. 2018;1(54):11–9.
Noble M, Wright G, Smith G, Dibben C. Measuring multiple deprivation at the small-area level. Environ Plan A. 2006;38(1):169–85.
Chevillard G, Mousquès J. Accessibilité aux soins et attractivité territoriale : proposition d’une typologie des territoires de vie français. Cybergeo : European Journal of Geography. 2018. http://journals.openedition.org/cybergeo/29737. Accessed 4 Dec 2019.
Jones M, Huh J. Toward a multidimensional understanding of residential neighborhood: a latent profile analysis of Los Angeles neighborhoods and longitudinal adult excess weight. Health Place. 2014;27:134–41.
Weden MM, Bird CE, Escarce JJ, Lurie N. Neighborhood archetypes for population health research: is there no place like home? Health Place. 2011;17(1):289–99.
Gershoff ET, Pedersen S, Lawrence Aber J. Creating neighborhood typologies of GIS-based data in the absence of neighborhood-based sampling: a factor and cluster analytic strategy. J Prev Interv Community. 2009;37(1):35–47.
Arcaya M, Reardon T, Vogel J, Andrews BK, Li W, Land T. Tailoring community-based wellness initiatives with latent class analysis–Massachusetts Community Transformation Grant projects. Prev Chronic Dis. 2014;11:E21.
Stafford M, Duke-Williams O, Shelton N. Small area inequalities in health: are we underestimating them? Soc Sci Med. 2008;67(6):891–9.
Terrenoire E, Bessagnet B, Rouïl L, Tognet F, Pirovano G, Létinois L, et al. High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE. Geosci Model Dev. 2015;8(1):21–42.
Yang Y, Ruan Z, Wang X, Yang Y, Mason TG, Lin H, et al. Short-term and long-term exposures to fine particulate matter constituents and health: a systematic review and meta-analysis. Environ Pollut. 2019;247:874–82.
Gómez-Barroso D, García-Pérez J, López-Abente G, Tamayo-Uria I, Morales-Piga A, Pardo Romaguera E, et al. Agricultural crop exposure and risk of childhood cancer: new findings from a case-control study in Spain. Int J Health Geogr. 2016;15(1):18.
Booth BJ, Ward MH, Turyk ME, Stayner LT. Agricultural crop density and risk of childhood cancer in the midwestern United States: an ecologic study. Environ Health. 2015;14:82.
Wami WM, Dundas R, Molaodi OR, Tranter M, Leyland AH, Katikireddi SV. Assessing the potential utility of commercial ‘big data’ for health research: enhancing small-area deprivation measures with Experian™ Mosaic groups. Health Place. 2019;57:238–46.
Bissonnette L, Wilson K, Bell S, Shah TI. Neighbourhoods and potential access to health care: the role of spatial and aspatial factors. Health Place. 2012;18(4):841–53.
Graham H. Social determinants and their unequal distribution: clarifying policy understandings. Milbank Q. 2004;82(1):101–24.