Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

IEEE Transactions on Image Processing - Tập 26 Số 7 - Trang 3142-3155 - 2017
Kai Zhang1,2,3,4,5,6, Wangmeng Zuo1,2,3,4,5,6, Yunjin Chen1,2,3,4,5,6, Deyu Meng1,2,3,4,5,6, Lei Zhang1,2,3,4,5,6
1Department of Computing, The Hong Kong Polytech-nic University, Hong Kong
2Department of Computing, The Hong Kong Polytechnic University, Hong Kong
3Institute for Computer Graphics and Vision, Graz University of Technology, 8010 Graz, Austria.
4School of Computer Science and Technology, Harbin In-stitute of Technology, Harbin 150001, China
5School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
6School of Mathematics and Statistics and Ministry of Education Key Lab of Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China.

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/ICIP.2013.6738475

timofte, 2014, A+: Adjusted anchored neighborhood regression for fast super-resolution, Proc Asian Conf Comput Vis, 111

10.1109/CVPR.2015.7298594

xie, 2012, Image denoising and inpainting with deep neural networks, Proc Adv Neural Inf Process Syst, 350

10.1109/CVPR.2012.6247952

jain, 2009, Natural image denoising with convolutional networks, Proc Adv Neural Inf Process Syst, 769

kingma, 2015, Adam: A method for stochastic optimization, Proc Int Conf Learn Represent, 1

zeiler, 2012, ADADELTA An Adaptive Learning Rate Method

duchi, 2011, Adaptive subgradient methods for online learning and stochastic optimization, J Mach Learn Res, 12, 2121

10.1109/ICCV.2015.123

10.1137/040605412

10.1109/ICCV.2011.6126278

10.1109/CVPR.2007.383092

10.1007/11744047_21

li, 2009, Markov Random Field Modeling in Image Analysis

10.1007/s11263-008-0197-6

10.1109/CVPR.2014.366

10.1007/s11263-016-0930-5

10.1109/CVPR.2014.349

10.1109/CVPR.2015.7299163

10.1109/TPAMI.2016.2596743

ioffe, 2015, Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proc Int Conf Mach Learn, 448

10.1109/ICCV.2009.5459452

krizhevsky, 2012, ImageNet classification with deep convolutional neural networks, Proc Adv Neural Inf Process Syst, 1097

10.1007/s11263-007-0052-1

10.1109/TIP.2006.881969

10.1109/CVPR.2016.90

10.1109/ICCV.2015.36

zha, 2016, Analyzing the group sparsity based on the rank minimization methods

10.1109/TIP.2012.2235847

10.1109/TIP.2007.901238

10.1016/0167-2789(92)90242-F

10.1109/CVPR.2005.38

burger, 2013, Learning how to combine internal and external denoising methods, Proc Pattern Recognit, 121

10.1109/CVPR.2009.5206774

levin, 2012, Patch complexity, finite pixel correlations and optimal denoising, Proc Eur Conf Comput Vis, 73

10.1109/ICCV.2015.73

10.1109/TIP.2012.2208981

10.1109/CVPR.2015.7299156

10.1109/CVPR.2009.5206811

10.1109/CVPR.2016.182

10.1109/TPAMI.2015.2441053

10.1109/CVPR.2011.5995309

10.1109/CVPR.2013.84

10.1145/2733373.2807412

simonyan, 2015, Very deep convolutional networks for large-scale image recognition, Proc Int Conf Learn Represent, 1

10.1109/TIP.2010.2050625

10.1109/TIP.2016.2531905